首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite their strategic potential, tool management issues in flexible manufacturing systems (FMSs) have received little attention in the literature. Nonavailability of tools in FMSs cuts at the very root of the strategic goals for which such systems are designed. Specifically, the capability of FMSs to economically produce customized products (flexibility of scope) in varying batch sizes (flexibility of volume) and delivering them on an accelerated schedule (market response time) is seriously hampered when required tools are not available at the time needed. On the other hand, excess inventory of tools in such systems represents a significant cost due to the expensive nature of FMS tool inventory. This article constructs a dynamic tool requirement planning (DTRP) model for an FMS tool planning operation that allows dynamic determination of the optimal tool replenishments at the beginning of each arbitrary, managerially convenient, discrete time period. The analysis presented in the article consists of two distinct phases: In the first phase, tool demand distributions are obtained using information from manufacturing production plans (such as master production schedule (MPS) and material requirement plans (MRP)) and general tool life distributions fitted on actual time-to-failure data. Significant computational reductions are obtained if the tool failure data follow a Weibull or Gamma distribution. In the second phase, results from classical dynamic inventory models are modified to obtain optimal tool replenishment policies that permit compliance with such FMS-specific constraints as limited tool storage capacity and part/tool service levels. An implementation plan is included.  相似文献   

2.
The speedy development and extensive application of computers have helped play a significant role in a new technological revolution. The importance of FMS flexibility in producing a variety of products and adapting rapidly to customer requirements makes FMSs attractive. Further, FMSs are most appropriate for largevariety and medium- to high-volume production environments. However, the module of the FMS production planning system is not perfect. This paper focuses on a new scheme for FMS production planning and dispatching under the realistic assumptions promoted by a particular flexible manufacturing factory. Some practical constraints such as fixture uniqueness, limited tool magazine capacity, and a given number of pallets are considered. The simulation results indicate that the scheme provides a good production plan, according to the short-term plans from the MIS Department. Some conclusions are drawn and a discussion is presented.  相似文献   

3.
Manufacturing multiple part types on a flexible manufacturing system (FMS) is increasingly becoming a rule rather than an exception. In such systems, attention has been drawn to the application of zero-defect technologies. However, in practice, this goal has remained elusive and costly. As a result, even though FMSs may be more reliable, producing fewer defective parts, system complexity and more stringent quality standards are rendering quality control in FMSs potentially useful. The goals of this article are threefold. First, we introduce a procedure for measuring and managing the in-process quality control of an FMS, which is described by an Open Queueing Network (OQN), bridging thereby a gap between queueing theory and quality control. Second, by focusing attention on the potential unreliabilities of FMSs, we provide some managerial insights regarding the role, position, and distribution of the quality control effort in an FMS. Finally, we stress the intricate relations between an FMS's operating characteristics and the manufactured quality and its control. Using numerical analyses, we draw some inferences regarding the design of such FMSs when both quality and quantity issues in the FMSs are considered. These simultaneous considerations of quantity and quality flows in an FMS have not been previously considered in the study of FMSs.  相似文献   

4.
This research compares seven approaches from the literature to the selection of part types for simultaneous production over the next time horizon. A flexible approach to the selection of part types and the simultaneous determination of their mix ratios so as to balance aggregate machine workloads is presented. Constraints on tool magazine capacity are considered. Simulation studies are conducted on realistic, detailed models of flexible flow systems (FFSs) configured as pooled machines of equal sizes. The simulated settings are constructed to evaluate the impact of such factors as blocking, transportation, buffer utilizations, and fixture requirements and limitations of various types. One of the goals of this study is to encourage industry to relax, for those FMS types for which the procedure is appropriate, what is essentially an artificial constraint: that tool changing be isolated in time, to a period between batches. For other types of FMSs, batching may be appropriate. The results indicate that using the flexible approach enables the system to be more highly utilized. It is also observed that the batching approaches tend to require more fixtures of each type than the flexible approach. The system utilizations for the batching approaches seem to be more sensitive to restrictions on the number of fixtures of each type. Further research needs are also discussed.  相似文献   

5.
In this paper, we study job shop-like flexible manufacturing systems (FMSs) with a discrete material handling system (MHS). In such FMSs, the MHS is a critical device, the unavailability of which may induce transfer blockings of the machines. The FMS devices therefore are hierarchically structured into primary and secondary devices to manage such blocking and avoid deadlocks in these FMSs. For evaluating the quantitative steady-state performance of such FMSs, we propose an analytical queueing network model that relies on an approximate method proposed for analyzing computer systems with simultaneous possessions of resources. Such a model is obtained using the concept of passive resources and by aggregating the FMS workload data so that models are much more tractable. The analytical results are validated against discrete event simulation and shown to be very encouraging. We also show how to increase their robustness, especially under light workload conditions, by modifying an assumption of the method concerning service time distributions.  相似文献   

6.
Flexible manufacturing Systems (FMSs) typically operate at 70–80% utilization, which is much higher than the utilization of traditional machines that can operate with as low as 20% utilization. A result is that an FMS may incur four times more wear and tear than a traditional system. This requests the execution of effective maintenance plans on FMSs. While maintenance actions can reduce the effects of breakdowns due to wear-outs, random failures are still unavoidable. It is important to understand the implications of a given maintenance plan on an FMS before its implementation. This paper discusses a procedure that combines simulation and analytical models to analyze the effects of corrective, preventive, and opportunistic maintenance policies on the performance of an FMS. The FMS performance is measured by its operational availability index, which is determined using the production output rate of the FMS under a variety of time between failure distributions and different operational conditions. The effects of various maintenance policies on FMS performance are simulated and the results are compared to determine the best policy for a given system.  相似文献   

7.
Loading in flexible manufacturing systems (FMSs) is affected by the characteristics of the FMS under analysis, by the type of plant where the FMS is introduced, and by the production planning hierarchy where the loading module operates. We propose an analysis of the various aspects that influence the problem formulation, identifying the alternatives available in real systems and possible future evolutions. We then provide a survey of different approaches proposed in the literature to tackle the loading problem. Articles are classified according to the type of FMS analyzed, the objective function, and the constraints. Finally, based on our analysis, we suggest some problem issues which need to be addressed, and also directions for future research.  相似文献   

8.
In automated production systems like flexible manufacturing systems (FMSs), an important issue is to find an adequate workload for each machine for each time period. Many integer linear programming (ILP) models have been proposed to solve the FMS loading problems, but not all of them take tools into account. Those that do not consider tooling are quite unrealistic, especially when setup times are important with respect to processing times. When tool loading has to be handled by the model, the load assignment may have to be changed completely. In this article we consider FMSs with a tool management of the following type: the system works in time periods whose durations are fixed or not; and tools are loaded on the machines at the beginning of each time period and stay there for the whole time period. Tool changes may occur only at the end of each time period when the system is stopped. We present some integer programming models for handling these situations with several types of objectives. Emphasis is laid on the ILP formulations. Computational complexities are discussed.  相似文献   

9.
Presented in the article is a method for constructing a graphical model of an FMS by using a new modeling tool called JR-net (Job Resource relation-net). JR-net is an object-oriented graphical tool for modeling automated manufacturing systems (AMSs), such as FMSs, FASs, and AS/RSs. As with the object-oriented modeling paradigm of Rumbaugh et al. (1991), the JR-net modeling framework supports the three stages of models: static layout model (object model); job flow model (functional model); and supervisory control model (dynamic model). In this article, the existing JR-net structure (Park 1992, Han et al., 1995) is extended further to make it a graphical tool for FMS modeling. Using the extended JR-net, a step-by-step procedure for constructing a graphical model of FMSs is presented. Also addressed are issues of classifying FMSs in terms of their generic functions and of utilizing the JR-net model of FMSs.  相似文献   

10.
Flexibility in part process representation and in highly adaptive routing algorithms are two major sources for improvement in the control of flexible manufacturing systems (FMSs). This article reports the investigation of the impact of these two kinds of flexibilities on the performance of the system. We argue that, when feasible, the choices of operations and sequencing of the part process plans should be deferred until detailed knowledge about the real-time factory state is available. To test our ideas, a flexible routing control simulation system (FRCS) was constructed and a programming language for modeling FMS part process plans, control strategies, and environments of the FMS was designed and implemented. In addition, a scheme for implementing flexible process routing called data flow dispatching rule (DFDR) was derived. The simulation results indicate that flexible processing can reduce mean flow time while increasing system throughput and machine utilization. We observed that this form of flexibility makes automatic load balancing of the machines possible. On the other hand, it also makes the control and scheduling process more complicated and calls for new control algorithms.  相似文献   

11.
Flexible manufacturing systems (FMSs) are a class of automated systems that can be used to improve productivity in batch manufacturing. Four stages of decision making have been defined for an FMS—the design, planning, scheduling, and control stages. This research focuses on the planning stage, and specifically in the area of scheduling batches of parts through the system. The literature to date on the FMS planning stage has mostly focused on the machine grouping, tool loading, and parttype selection problems. Our research carries the literature a step further by addressing the problem of scheduling batches of parts. Due to the use of serial-access material-handling systems in many FMSs, the batch-scheduling problem is modeled for a flexible flow system (FFS). This model explicitly accounts for setup times between batches that are dependent on their processing sequence. A heuristic procedure is developed for this batch-scheduling problem—the Maximum Savings (MS) heuristic. The MS heuristic is based upon the savings in time associated with a particular sequence and selecting the one with the maximum savings. It uses a two-phase method, with the savings being calculated in phase I, while a branch-and-bound procedure is employed to seek the best heuristic solution in phase II. Extensive computational results are provided for a wide variety of problems. The results show that the MS heuristic provides good-quality solutions.  相似文献   

12.
This paper demonstrates the importance of jointly considering financing and technology choices when making manufacturing investments. We show that considerable value can be added to investments through financing decisions, and that the gains due to financing are sensitive to technology choice. A model of financing and technology choice is presented that considers differences in cost structure and product flexibility, and applies it to an example involving flexible manufacturing systems (FMSs). Three main results emerge. First, optimal financing decisions are different for different technologies and the choice of technology can change when financing and technology decisions are made simultaneously. Second, if one technology's fixed and variable costs are lower or its initial investment higher than another technology's the former has higher value added due to financing. Since empirical data shows that FMS and conventional technologies have this pattern, ignoring the benefits of debt financing leads to undervaluation of new technology. Third, product flexibility can add considerable value through its effect on financing decisions because product flexibility reduces variability of cash flows. A major conclusion is that financing and technology choice are long-term strategic decisions that should be made jointly. Firms that make these decisions separately, not considering the effect of one on the other, may make suboptimal technology decisions.  相似文献   

13.
This introduction article attempts to present some major issues relating to the integration of process planning and production planning and control (PPC) for flexible manufacturing systems (FMSs). It shows that the performance of an FMS can be significantly improved and FMS capabilities more effectively utilized by integrating process planning and PPC functions. The various types of flexibility to be planned and provided for in process planning and manufacturing are summarized in the article, as well as emerging conceptual frameworks for integration, along with their implementation requirements and problems. Distinctive elements that differentiate these frameworks, such as the extent of integration of process planning and PPC activities, number of alternative process plans, and the time at which numerical control programs are generated, are discussed, followed by a brief summary of the articles compiled for this special issue.  相似文献   

14.
In production environments, such as Flexible Manufacturing Systems (FMSs), the schedule can be disturbed by the occurrence of unplanned events. Machines stop for major failures, maintenance, tool changes due to wear, or tool reassignments. The rescheduling process, however, can be costly. In this study, a dynamic measure of flexibility which helps to determine an appropriate time for rescheduling an FMS has been defined and investigated. Flexibility is defined as a function of Capability and Capacity. Accordingly, two metrics have been developed to monitor the capability and capacity efficiency of each machine in the system for responding to the dynamic system status. The value of each metric falls between 0 and 1 at all times. Higher values in the capability metric mean better machine selection and part distribution strategies among the machines. Higher values for the capacity metric mean higher machine utilization in the production plan. Based on the interaction between the metrics and their respective behavior in the system, four states have been identified and characterized. Simulations of various scenarios can be used to demonstrate the use of these metrics for monitoring FMS operations and determining appropriate times for rescheduling and tool reassignment.  相似文献   

15.
The planning, scheduling, and control of manufacturing systems can all be viewed as problem-solving activities. In flexible manufacturing systems (FMSs), the computer program carrying out these problem-solving activities must additionally be able to handle the shorter lead time, the flexibility of job routing, the multiprocessing environment, the dynamic changing states, and the versatility of machines. This article presents an artificial intelligence (AI) method to perform manufacturing problem solving. Since the method is driven by manufacturing scenarios represented by symbolic patterns, it is referred to as pattern-directed. The method is based on three AI techniques. The first is the pattern-directed inference technique to capture the dynamic nature of FMSs. The second is the nonlinear planning technique to construct schedules and assign resources. The third is the inductive learning method to generate the pattern-directed heuristics. This article focuses on solving the FMS scheduling problem. In addition, this article reports the computation results to evaluate the utility of various heuristic functions, to identify important design parameters, and to analyze the resulting computational performance in using the pattern-directed approach for manufacturing problem-solving tasks such as scheduling.  相似文献   

16.
Flexible manufacturing systems (FMSs) can apply the efficiencies of large-scale production to small batch production. The coordination of FMS activities is a complex task; this paper presents a decentralized pricing mechanism that can be used to estimate the activity–based costs and manage the activities of the FMS efficiently. The pricing mechanism described in this paper does not require systemwide information to compute prices; instead, the pricing mechanism samples and uses the demand information at each CNC machine to compute rental prices at that machine. We derive the theoretical formula for rental prices supporting the optimal performance and propose simulation studies to estimate the rental prices for real-time price changes in a decentralized manner. Results from a preliminary simulation study indicate that stable rental prices can be estimated and significant improvements can be realized by using the pricing mechanism.  相似文献   

17.
In the increasingly competitive global markets, enterprises face challenges in responding to customer orders quickly, as well as producing customized products cost-effectively. This paper proposes a dynamic heuristic-based algorithm for the part input sequencing problem of flexible manufacturing systems (FMSs) in a mass customization (MC) environment. The FMS manufactures a variety of parts, and customer orders arrive dynamically with order size as small as one. Segmental set functions are established in the proposed algorithm to apply the strategy of dynamic workload balancing, and the shortest processing time (SPT) scheduling rule. Theoretical analysis is performed and the effectiveness of the algorithm in dynamic workload balancing under the complex and dynamic environment is proven. The application of the algorithm is illustrated by an example. The potential of its practical applications to the FMSs in make-to-order (MTO) supply chains is also discussed. Further research is provided.  相似文献   

18.
This paper presents a hierarchical approach to scheduling flexible manufacturing systems (FMSs) that pursues multiple performance objectives and considers the process flexibility of incorporating alternative process plans and resources for the required operations. The scheduling problem is solved at two levels: the shop level and the manufacturing system level. The shop level controller employs a combined priority index developed in this research to rank shop production orders in meeting multiple scheduling objectives. To overcome dimensional complexity and keep a low level of work-in-process inventory, the shop controller first selects up to three production orders with the highest ranking as candidates and generates all possible release sequences for them, with or without multitasking. These sequences are conveyed to the manufacturing system controller, who then performs detailed scheduling of the machines in the FMS using a fixed priority heuristic for routing parts of multiple types while considering alternative process plans and resources for the operations. The FMS controller provides feedback to the shop controller with a set of suggested detailed schedules and projected order completion times. On receiving these results, the shop controller further evaluates each candidate schedule using a multiple-objective function and selects the best schedule for execution. This allows multiple performance objectives of an FMS to be achieved by the integrated hierarchical scheduling approach.  相似文献   

19.
Deadlock-free operation of flexible manufacturing systems (FMSs) is an important goal of manufacturing systems control research. In this work, we develop the criteria that real-time FMS deadlock-handling strategies must satisfy. These criteria are based on a digraph representation of the FMS state space. Control policies for deadlock-free operation are characterized as partitioning cuts on this digraph. We call these structural control policies (SCPs) because, to avoid deadlock, they must guarantee certain structural properties of the subdigraph containing the empty state; namely, that it is strongly connected. A policy providing this guarantee is referred to as correct. Furthermore, an SCP must be configurable and scalable; that is, its correctness must not depend on configuration-specific system characteristics and it must remain computationally tractable as the FMS grows in size. Finally, an SCP must be efficient; that is, it must not overly constrain FMS operation. We formally develop and define these criteria, formulate guidelines for developing policies satisfying these criteria, and then provide an example SCP development using these guidelines. Finally, we present an SCP that guarantees deadlock-free buffer space allocation for FMSs with no route restrictions.  相似文献   

20.
In vitro spine flexibility testing has been performed using a variety of laboratory-specific loading apparatuses and conditions, making test results across laboratories difficult to compare. The application of pure moments has been well established for spine flexibility testing, but to our knowledge there have been no attempts to quantify differences in range of motion (ROM) resulting from laboratory-specific loading apparatuses. Seven fresh-frozen lumbar cadaveric motion segments were tested intact at four independent laboratories. Unconstrained pure moments of 7.5 Nm were applied in each anatomic plane without an axial preload. At laboratories A and B, pure moments were applied using hydraulically actuated spinal loading fixtures with either a passive (A) or controlled (B) XY table. At laboratories C and D, pure moments were applied using a sliding (C) or fixed ring (D) cable–pulley system with a servohydraulic test frame. Three sinusoidal load-unload cycles were applied at laboratories A and B while a single quasistatic cycle was applied in 1.5 Nm increments at laboratories C and D. Non-contact motion measurement systems were used to quantify ROM. In all test directions, the ROM variability among donors was greater than single-donor ROM variability among laboratories. The maximum difference in average ROM between any two laboratories was 1.5° in flexion-extension, 1.3° in lateral bending and 1.1° in axial torsion. This was the first study to quantify ROM in a single group of spinal motion segments at four independent laboratories with varying pure moment systems. These data support our hypothesis that given a well-described test method, independent laboratories can produce similar biomechanical outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号