首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo.

Methodology/Principal Findings

To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES) cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs) under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo.

Conclusions/Significance

Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.  相似文献   

2.

Background

In the bovine species milk production is well known to correlate with mammary tissue mass. However, most advances in optimizing milk production relied on improvements of breeding and husbandry practices. A better understanding of the cells that generate bovine mammary tissue could facilitate important advances in milk production and have global economic impact. With this possibility in mind, we show that a mammary stem cell population can be functionally identified and isolated from the bovine mammary gland. We also demonstrate that this stem cell population may be a promising target for manipulating the composition of cow''s milk using gene transfer.

Methods and Findings

We show that the in vitro colony-forming cell assay for detecting normal primitive bipotent and lineage-restricted human mammary clonogenic progenitors are applicable to bovine mammary cells. Similarly, the ability of normal human mammary stem cells to regenerate functional bilayered structures in collagen gels placed under the kidney capsule of immunodeficient mice is shared by a subset of bovine mammary cells that lack aldehyde dehydrogenase activity. We also find that this activity is a distinguishing feature of luminal-restricted bovine progenitors. The regenerated structures recapitulate the organization of bovine mammary tissue, and milk could be readily detected in these structures when they were assessed by immunohistochemical analysis. Transplantation of the bovine cells transduced with a lentivirus encoding human β-CASEIN led to expression of the transgene and secretion of the product by their progeny regenerated in vivo.

Conclusions

These findings point to a common developmental hierarchy shared by human and bovine mammary glands, providing strong evidence of common mechanisms regulating the maintenance and differentiation of mammary stem cells from both species. These results highlight the potential of novel engineering and transplant strategies for a variety of commercial applications including the production of modified milk components for human consumption.  相似文献   

3.
In embryogenesis, p63 is essential to develop mammary glands. In the adult mammary gland, p63 is highly expressed in the basal cell layer that comprises myoepithelial and interspersed stem/progenitor cells, and has limited expression in luminal epithelial cells. In adult skin, p63 has a crucial role in the maintenance of epithelial stem cells. However, it is unclear whether p63 also has an equivalent role as a stem/progenitor cell factor in adult mammary epithelium. We show that p63 is essential in vivo for the survival and maintenance of parity-identified mammary epithelial cells (PI-MECs), a pregnancy-induced heterogeneous population that survives post-lactational involution and contain multipotent progenitors that give rise to alveoli and ducts in subsequent pregnancies. p63+/− glands are normal in virgin, pregnant and lactating states. Importantly, however, during the apoptotic phase of post-lactational involution p63+/− glands show a threefold increase in epithelial cell death, concomitant with increased activation of the oncostatin M/Stat3 and p53 pro-apoptotic pathways, which are responsible for this phase. Thus, p63 is a physiologic antagonist of these pathways specifically in this regressive stage. After the restructuring phase when involution is complete, mammary glands of p63+/− mice again exhibit normal epithelial architecture by conventional histology. However, using RosaLSL-LacZ;WAP-Cre transgenics (LSL-LacZ, lox-stop-lox β-galactosidase), a genetic in vivo labeling system for PI-MECs, we find that p63+/− glands have a 30% reduction in the number of PI-MEC progenitors and their derivatives. Importantly, PI-MECs are also cellular targets of pregnancy-promoted ErbB2 tumorigenesis. Consistent with their PI-MEC pool reduction, one-time pregnant p63+/− ErbB2 mice are partially protected from breast tumorigenesis, exhibiting extended tumor-free and overall survival, and reduced tumor multiplicity compared with their p63+/+ ErbB2 littermates. Conversely, in virgin ErbB2 mice p63 heterozygosity provides no survival advantage. In sum, our data establish that p63 is an important survival factor for pregnancy-identified PI-MEC progenitors in breast tissue in vivo.  相似文献   

4.
5.
Cyclin Y family can enhance Wnt/β-catenin signaling in mitosis. Their physiological roles in mammalian development are yet unknown. Here we show that Cyclin Y-like 1 (Ccnyl1) and Cyclin Y (Ccny) have overlapping function and are crucial for mouse embryonic development and mammary stem/progenitor cell functions. Double knockout of Ccnys results in embryonic lethality at E16.5. In pubertal development, mammary terminal end buds robustly express Ccnyl1. Depletion of Ccnys leads to reduction of Lrp6 phosphorylation, hampering β-catenin activities and abolishing mammary stem/progenitor cell expansion in vitro. In lineage tracing experiments, Ccnys-deficient mammary cells lose their competitiveness and cease to contribute to mammary development. In transplantation assays, Ccnys-deficient mammary cells fail to reconstitute, whereas constitutively active β-catenin restores their regeneration abilities. Together, our results demonstrate the physiological significance of Ccnys-mediated mitotic Wnt signaling in embryonic development and mammary stem/progenitor cells, and reveal insights in the molecular mechanisms orchestrating cell cycle progression and maintenance of stem cell properties.  相似文献   

6.
The dairy industry is a multi-billion dollar industry catering the nutritional needs of all age groups globally through the supply of milk. Clinical mastitis has a severe impact on udder tissue and is also an animal welfare issue. Moreover, it significantly reduces animal value and milk production. Mammary tissue damage reduces the number and activity of epithelial cells and consequently contributes to decreased milk production. The high incidence, low cure rate of this highly economic and sometimes deadly disease is an alarming for dairy sector as well as policy makers. Bovine mammary epithelial cells (MECs) and their stem cells are very important in milk production and bioengineering. The adult mammary epithelium consists of two main cell types; an inner layer of luminal epithelial cells, which produce the milk during lactation, and an outer layer of myoepithelial cells resting on a basement membrane, which are responsible for pushing the milk through the ductal network to the teat cistern. Inner layer of columner/luminal cells of bovine MECs, is characterized by cytokeratin18, 19 (CK18, CK19) and outer layer such as myoepithelial cells which are characterized by CK14, α-smooth muscle actin (α-SMA) and p63. Much work has been done in mouse and human, on mammary gland stem cell research, particularly in cancer therapy, but stem cell research in bovine is still in its infancy. Such stem/progenitor cell discoveries in human and mouse mammary gland bring some hope for application in bovines. These progenitors may be therapeutically adopted to correct the structural/cytological defects in the bovine udder due to mastitis. In the present review we focused on various kinds of stem/progenitor cells which can have therapeutic utility and their possibilities to use as a potential stem cell therapy in the management of bovine post-mastitis damage in orders to restore milk production. The possibilities of bovine mammary stem cell therapy offers significant potential for regeneration of tissues that can potentially replace/repair diseased and damaged tissue through differentiation into epithelial, myoepithelial and/or cuboidal/columnar cells in the udder with minimal risk of rejection and side effects.  相似文献   

7.
Polarity coordinates cell movement, differentiation, proliferation and apoptosis to build and maintain complex epithelial tissues such as the mammary gland. Loss of polarity and the deregulation of these processes are critical events in malignant progression but precisely how and at which stage polarity loss impacts on mammary development and tumourigenesis is unclear. Scrib is a core polarity regulator and tumour suppressor gene however to date our understanding of Scrib function in the mammary gland has been limited to cell culture and transplantation studies of cell lines. Utilizing a conditional mouse model of Scrib loss we report for the first time that Scrib is essential for mammary duct morphogenesis, mammary progenitor cell fate and maintenance, and we demonstrate a critical and specific role for Scribble in the control of the early steps of breast cancer progression. In particular, Scrib-deficiency significantly induced Fra1 expression and basal progenitor clonogenicity, which resulted in fully penetrant ductal hyperplasia characterized by high cell turnover, MAPK hyperactivity, frank polarity loss with mixing of apical and basolateral membrane constituents and expansion of atypical luminal cells. We also show for the first time a role for Scribble in mammalian spindle orientation with the onset of mammary hyperplasia being associated with aberrant luminal cell spindle orientation and a failure to apoptose during the final stage of duct tubulogenesis. Restoring MAPK/Fra1 to baseline levels prevented Scrib-hyperplasia, whereas persistent Scrib deficiency induced alveolar hyperplasia and increased the incidence, onset and grade of mammary tumours. These findings, based on a definitive genetic mouse model provide fundamental insights into mammary duct maturation and homeostasis and reveal that Scrib loss activates a MAPK/Fra1 pathway that alters mammary progenitor activity to drive premalignancy and accelerate tumour progression.  相似文献   

8.
Buffaloes account for more than 56% of total milk production in India. Cyclic remodeling of mammary glands of human, mice, cow, sheep, and goat is determined by mammary stem cells. It is logical to assume that buffalo mammary gland will have mammary stem/progenitor cells. Thus far, no report exists on identification of buffalo mammary stem cells. Hepatocyte nuclear factor 4 alpha (HNF4A) is a candidate marker for hepatic progenitor cells and has recently been suggested as a marker of bovine mammary stem/progenitor cells. We hypothesized that (1 Pasha TN, Hayat Z. Present situation and future perspective of buffalo production in Asia. J Anim Plant Sci 2012; 22(3 supple.):250256. [Google Scholar]) HNF4A identifies putative buffalo mammary stem/progenitor cells and (2 NDDB. National Dairy Development Board. 2015. http://www.nddb.org/English/Statistics/Pages/Milk-Production.aspx. Accessed May 10, 2015. [Google Scholar]) the number of HNF4A-positive cells increases during mastitis. Sixteen buffalo mammary samples were collected from a local slaughterhouse. Hematoxylin and eosin staining were performed on 5-micron thick sections and on the basis of gross examination and histomorphology of the mammary glands, physiological stages of the animals were estimated as non-lactating (n = 4), mastitis (n = 9), and prepubertal (n = 3). In total, 24048 cells were counted (5–10 microscopic fields/animal; n = 16 animals) of which, 40% cells were mammary epithelial cells (MEC) and 60% cells were the stromal cells. The percentage of MEC in non-lactating animals was higher compared to mastitic animals (47.3% vs. 37.3%), which was likely due to loss of MEC in mastitis. HNF4A staining was observed in nuclei of MEC of ducts, alveoli, and stromal cells. Basal location and low frequency of HNF4A-positive MEC (ranges from 0.4–4.5%) were consistent with stem cell characteristics. Preliminary study showed coexpression of HNF4A with MSI1 (a mammary stem cell marker in sheep), suggesting HNF4A was likely to be a putative mammary stem/progenitor cell marker in buffalo. HNF4A-positive MEC (basal and luminal; light and dark stained) tended to be higher in non-lactating than the mastitic animals (8.73 ± 1.71% vs. 4.29 ± 1.19%; P = 0.07). The first hypothesis that HNF4A identify putative mammary stem/progenitor cells was confirmed but the second hypothesis that the number of mammary stem/progenitor cells decreases during mastitis was unsupported. This is the first report outlining the expression of HNF4A and identification of putative mammary stem/progenitor cells in buffalo mammary gland.  相似文献   

9.
乳腺干细胞是研究器官形成、细胞增殖、分化、生存和凋亡等信号通路的理想模型,而近来的研究发现许多成体干细胞的特异性表面标记都与细胞黏附分子(celladhesion molecule,CAM)家族相关.因此,研究胚胎期乳腺干/祖细胞群的黏附分子基因表达特点,对于纯化和鉴定胚胎期乳腺干/祖细胞具有重要指导意义.用成年小鼠乳腺上皮干细胞的标记CD24和CD49f来分选小鼠胚胎期14天乳腺原基细胞群,发现CD24+和CD49f+双阳性的乳腺原基细胞包含两个细胞群:CD24hiCD49f+细胞群和CD24medCD49f+细胞群.它们占乳腺原基总细胞的比例分别为16%和47%.在随后的细胞培养实验和体内移植再生实验中发现,CD24medCD49f+细胞群可以贴壁,而且具有再生乳腺导管的能力,相反,CD24hiCD49f+细胞群既不能贴壁也不具有移植再生能力.这些结果表明,这两个细胞群分别代表不同的细胞类型,而CD24medCD49f+细胞群有可能包含具有自我更新能力的乳腺原基干/祖细胞.挑选了可能与乳腺相关的19个黏附分子,并对这两群细胞进行了定量PCR检测.结果表明,具有乳腺导管重建能力的CD24medCD49f+细...  相似文献   

10.
Cell-surface markers expressed on mammary stem cells and progenitors have helped to establish a preliminary mammary cell lineage hierarchy. Further characterization of these cells depends on overcoming several technical obstacles.Remarkable progress has been made in the past decade in the isolation and characterization of mouse mammary stem cells and progenitors, as nicely reviewed in the article by Visvader and Smith (2011). Following in the footsteps of the hematopoietic system and analogous to bone marrow transplantation, the mammary gland can be reconstituted following transplantation of cells into the cleared mammary fat pad (see review by Medina 2011). Taking advantage of these similarities as well as the availability of genetically engineered mice (GEM), our laboratory initially used magnetic bead and fluorescence-activated cell sorting (FACS) and SCA enhanced green fluorescent protein (EGFP) knock-in mice to identify mammary gland progenitors (Welm et al. 2002). We also attempted to identify and isolate quiescent cells using a BrdU label retention strategy that had been successfully applied in the epidermal and intestinal epithelium. Subsequently, the identification of several cell-surface markers expressed on mammary stem cells and progenitors has resulted in an explosion in the field, and helped to define a preliminary mammary cell lineage hierarchy. These studies on the normal mammary gland have also provided the basis for hypotheses into potential mechanisms accounting for the heterogeneity of breast cancer subtypes (Behbod and Rosen 2004).One intrinsic difference between the hematopoietic system and the mammary gland, however, is the requirement for tissue dissociation in the latter case to facilitate the isolation of single cells required for FACS sorting. Even when using freshly isolated cells, there is a concern that these rather lengthy dissociation protocols may alter the expression of cell-surface molecules and properties of cells following disruption of the mammary gland architecture. Even short-term cell culture of primary mammary epithelial cells may alter the expression of cell-surface molecules. At present, single gene markers of mammary stem cells have not been identified, so the application of knock-in mice, e.g., the use of LGR5-EGFP to identify intestinal stem cells and perform lineage-tracing experiments (Barker et al. 2007), has not been feasible. One alternative approach may be to use pathway reporters, as recently described by Zeng and Nusse (2010), who used an axin-lacZ knock-in mouse to identify cells with canonical Wnt signaling with increased mammary repopulating activity. We have used a similar approach in a p53-null mouse mammary cancer model following lentiviral transduction with a Wnt reporter construct to identify cells with enhanced canonical Wnt signaling. These cells displayed a significant overlap with cell-surface markers in the basal-like tumors shown to enrich for tumor-initiating cells (Zhang et al. 2010).The use of multiple pathway reporters with different fluorescent reporters may provide a new approach to complement the current dependence on cell-surface markers. Fluorescent reporters also have the potential to help precisely visualize and model the location of mammary stem cells and progenitors in situ using multiphoton and other sophisticated microscopic techniques. The ability to visualize single stem cells in their niche environment and to follow both symmetric versus asymmetric division ultimately will be required for the next advances in the field. Recent studies on the paracrine effects of the steroid hormones, estrogen and progesterone, on mammary gland stem cells and progenitors illustrate the need to understand the spatial relationships among the various epithelial and stromal cell types present in the mammary gland. These studies will need to include cells from the immune system such as macrophages, neutrophils, etc., and derivatives of mesenchymal stem cells. Hopefully, in the near future it may be feasible to reconstitute and study these interactions in vitro, but for the present time this can be studied in GEM models. In addition, there is increasing evidence for the coexistence of quiescent and active adult stem cells in mammals (Li and Clevers 2010), but these distinct populations and their spatial and temporal relationships in the mammary gland remain to be discovered. Application of single-cell analysis using newly developed microfluidic platforms has the potential to help elucidate the potential heterogeneity of signaling pathways and gene expression in mammary stem cells and progenitors. Finally, there is a critical need for lineage-tracing experiments in the normal mammary gland to validate the proposed hierarchy for stem cells and progenitors, as well as to identify the cells of origin for different subtypes of breast cancer. Comparative studies of the murine and human stem cell populations in both the normal mammary gland and different breast cancer subtypes hold enormous potential for the future. Thus, despite the remarkable progress in this field, much remains to be done.  相似文献   

11.
BACKGROUND: Somatic stem and progenitor cell division is likely to be an important determinant of tumor development. Each division is accompanied by a risk of fixing genetic mutations, and/or generating innately immortal cells that escape normal physiological controls. AIM: Using biological information, we aimed to devise a theoretical model for mammary gland development that described the effect of various stem/progenitor cells activities on the demographics of adult mammary epithelial cell populations. RESULTS: We found that mammary ductal trees should develop in juvenile mice despite widely variant levels of activity in the progenitor compartment. Sequestration (inactivation) of progenitor cells dramatically affected the aging-maturation of the population without affecting the total regenerative capacity of the gland. Our results showed that if stem and progenitor cells can be demonstrated in glands regenerated by serial transplantation, they originated in a canonical primary stem cell (providing a functional definition of mammary stem cells). Finally, when the probability of symmetric division of stem cells increased above a threshold, the mammary epithelial population overall was immortal during serial transplantation. CONCLUSIONS: This model provides, (1) a theoretical framework for testing whether the phenotypes of genetically modified mice (many of which are breast cancer models) derive from changes of stem and progenitor activity, and (2) a means to evaluate the resolving power of functional assays of regenerative capacity in mammary epithelial cell populations.  相似文献   

12.
Expression of the heparin-binding growth factor, pleiotrophin (PTN) in the mammary gland has been reported but its function during mammary gland development is not known. We examined the expression of PTN and its receptor ALK (Anaplastic Lymphoma Kinase) at various stages of mouse mammary gland development and found that their expression in epithelial cells is regulated in parallel during pregnancy. A 30-fold downregulation of PTN mRNA expression was observed during mid-pregnancy when the mammary gland undergoes lobular-alveolar differentiation. After weaning of pups, PTN expression was restored although baseline expression of PTN was reduced significantly in mammary glands of mice that had undergone multiple pregnancies. We found PTN expressed in epithelial cells of the mammary gland and thus used a monoclonal anti-PTN blocking antibody to elucidate its function in cultured mammary epithelial cells (MECs) as well as during gland development. Real-time impedance monitoring of MECs growth, migration and invasion during anti-PTN blocking antibody treatment showed that MECs motility and invasion but not proliferation depend on the activity of endogenous PTN. Increased number of mammospheres with laminin deposition after anti-PTN blocking antibody treatment of MECs in 3D culture and expression of progenitor markers suggest that the endogenously expressed PTN inhibits the expansion and differentiation of epithelial progenitor cells by disrupting cell-matrix adhesion. In vivo, PTN activity was found to inhibit ductal outgrowth and branching via the inhibition of phospho ERK1/2 signaling in the mammary epithelial cells. We conclude that PTN delays the maturation of the mammary gland by maintaining mammary epithelial cells in a progenitor phenotype and by inhibiting their differentiation during mammary gland development.  相似文献   

13.
14.
15.

Background

Hematopoietic stem/progenitor cells (HSPCs) maintain the hematopoietic system by balancing their self-renewal and differentiation events. Hematopoietic stem cells also migrate to various sites and interact with their specific microenvironment to maintain the integrity of the system. Rho GTPases have been found to control the migration of hematopoietic cells and other cell types. Although the role of RAC1, RAC2 and CDC42 has been studied, the role of RHOA in human hematopoietic stem cells is unclear.

Results

By utilizing constitutively active and dominant negative RHOA, we show that RHOA negatively regulates both in vitro and in vivo migration and dominant negative RHOA significantly increased the migration potential of human HSC/HPCs. Active RHOA expression favors the retention of hematopoietic stem/progenitor cells in the niche rather than migration and was found to lock the cells in the G0 cell cycle phase thereby affecting their long-term self-renewal potential.

Conclusion

The current study demonstrates that down-regulation of RHOA might be used to facilitate the migration and homing of hematopoietic stem cells without affecting their long-term repopulating ability. This might be of interest especially for increasing the homing of ex vivo expanded HSPC.  相似文献   

16.

Background

Recent evidence suggests that human breast cancer is sustained by a minor subpopulation of breast tumor-initiating cells (BTIC), which confer resistance to anticancer therapies and consequently must be eradicated to achieve durable breast cancer cure.

Methods/Findings

To identify signaling pathways that might be targeted to eliminate BTIC, while sparing their normal stem and progenitor cell counterparts, we performed global gene expression profiling of BTIC- and mammary epithelial stem/progenitor cell- enriched cultures derived from mouse mammary tumors and mammary glands, respectively. Such analyses suggested a role for the Wnt/Beta-catenin signaling pathway in maintaining the viability and or sustaining the self-renewal of BTICs in vitro. To determine whether the Wnt/Beta-catenin pathway played a role in BTIC processes we employed a chemical genomics approach. We found that pharmacological inhibitors of Wnt/β-catenin signaling inhibited sphere- and colony-formation by primary breast tumor cells and primary mammary epithelial cells, as well as by tumorsphere- and mammosphere-derived cells. Serial assays of self-renewal in vitro revealed that the Wnt/Beta-catenin signaling inhibitor PKF118–310 irreversibly affected BTIC, whereas it functioned reversibly to suspend the self-renewal of mammary epithelial stem/progenitor cells. Incubation of primary tumor cells in vitro with PKF118–310 eliminated their capacity to subsequently seed tumor growth after transplant into syngeneic mice. Administration of PKF118–310 to tumor-bearing mice halted tumor growth in vivo. Moreover, viable tumor cells harvested from PKF118–310 treated mice were unable to seed the growth of secondary tumors after transplant.

Conclusions

These studies demonstrate that inhibitors of Wnt/β-catenin signaling eradicated BTIC in vitro and in vivo and provide a compelling rationale for developing such antagonists for breast cancer therapy.  相似文献   

17.
Estrogen is necessary for the full development of the mammary gland and it is also involved in breast cancer development. We set out to identify and characterise progenitor/stem cells in the human mammary gland and to explore the role of estrogen in their proliferation and differentiation. Three candidate stem cell populations were isolated: double positive (DP) cells co-expressed the luminal and myoepithelial markers, EMA and CALLA, respectively, whereas double negative (DN) cells did not express these cell surface markers; side population (SP) cells were characterised by their differential ability to efflux the dye Hoechst 33342. The ABC transporter, breast cancer resistance protein (BCRP) was more highly expressed in SP cells than in non-SP cells and a specific BCRP inhibitor, Ko143, reduced SP formation, suggesting that BCRP confers the SP phenotype in mammary epithelial cells, as has been demonstrated in other tissues. Interestingly, SP cells were double negative for the EMA and CALLA antigens and therefore represent a separate and distinct population to DP cells. Single cell multiplex RT-PCR indicated that the SP and DN cells do not express detectable levels of ERalpha or ERbeta, suggesting that estrogen is not involved in their proliferation. DP cells expressed ERalpha but at a lower level than differentiated luminal cells. These findings invoke a potential strategy for the breast stem/progenitor cells to ignore the mitogenic effects of estrogen. All three cell populations generated mixed colonies containing both luminal and myoepithelial cells from a single cell and therefore represent candidate multipotent stem cells. However, DN cells predominately generated luminal colonies and exhibited a much higher cloning efficiency than differentiated luminal cells. Further characterisation of these candidate progenitor/stem cells should contribute to a better understanding of normal mammary gland development and breast tumorigenesis.  相似文献   

18.
19.
The large airways are directly in contact with the environment and therefore susceptible to injury from toxins and infectious agents that we breath in 1. The large airways therefore require an efficient repair mechanism to protect our bodies. This repair process occurs from stem cells in the airways and isolating these stem cells from the airways is important for understanding the mechanisms of repair and regeneration. It is also important for understanding abnormal repair that can lead to airway diseases 2. The goal of this method is to isolate a novel stem cell population from the mouse tracheal submucosal gland ducts and to place these cells in in vitro and in vivo model systems to identify the mechanisms of repair and regeneration of the submucosal glands 3. This production shows methods that can be used to isolate and assay the duct and basal stem cells from the large airways 3.This will allow us to study diseases of the airway, such as cystic fibrosis, asthma and chronic obstructive pulmonary disease. Currently, there are no methods for isolation of submucosal gland duct cells and there are no in vivo models to study the regeneration of submucosal glands.  相似文献   

20.
Human cardiac stem/progenitor cells and their potential for repair of heart injury are a current hot topic of research. CD117 has been used frequently as a marker for identification of stem/progenitor cells in the heart. However, cardiac mast cells, which are also CD117+, have not been excluded by credible means when selecting putative cardiac progenitors by using CD117 as a marker. We evaluated the relationship between CD117+ cells and mast cells in the left ventricle of human hearts (n=5 patients, ages 1 week–75 years) with the well-established mast cell markers tryptase, toluidine blue, and thionine. A large number (85–100%) of CD117+ cells in the human heart were specifically identified as mast cells. In addition, mast cells showed weak or moderate CD45 immunostaining signals. These results indicate that the majority of CD117+ cells in the heart are mast cells and that these cells are distinctly positive for CD45, although staining was weak or moderate. These results strongly suggest that the newly reported CD117+/CD45dim/moderate putative cardiac progenitor cells are mast cells. The significance of this observation in stem cell research of the heart is discussed. (J Histochem Cytochem 58:309–316, 2010)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号