首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Notch, Sonic Hedgehog (Shh), Wnt, and EGF pathways have long been known to influence cell fate specification in the developing nervous system. Here we attempted to evaluate the contemporary knowledge about neural stem cell differentiation promoted by various drug-based regulations through a systems biology approach. Our model showed the phenomenon of DAPT-mediated antagonism of Enhancer of split [E(spl)] genes and enhancement of Shh target genes by a SAG agonist that were effectively demonstrated computationally and were consistent with experimental studies. However, in the case of model simulation of Wnt and EGF pathways, the model network did not supply any concurrent results with experimental data despite the fact that drugs were added at the appropriate positions. This paves insight into the potential of crosstalks between pathways considered in our study. Therefore, we manually developed a map of signaling crosstalk, which included the species connected by representatives from Notch, Shh, Wnt, and EGF pathways and highlighted the regulation of a single target gene, Hes-1, based on drug-induced simulations. These simulations provided results that matched with experimental studies. Therefore, these signaling crosstalk models complement as a tool toward the discovery of novel regulatory processes involved in neural stem cell maintenance, proliferation, and differentiation during mammalian central nervous system development. To our knowledge, this is the first report of a simple crosstalk map that highlights the differential regulation of neural stem cell differentiation and underscores the flow of positive and negative regulatory signals modulated by drugs.  相似文献   

2.
Breast cancer angiogenesis is elicited and regulated by a number of factors including the Notch signaling. Notch receptors and ligands are expressed in breast cancer cells as well as in the stromal compartment and have been implicated in carcinogenesis. Signals exchanged between neighboring cells through the Notch pathway can amplify and consolidate molecular differences, which eventually dictate cell fates. Notch signaling and its crosstalk with many signaling pathways play an important role in breast cancer cell growth, migration, invasion, metastasis and angiogenesis, as well as cancer stem cell (CSC) self-renewal. Therefore, significant attention has been paid in recent years toward the development of clinically useful antagonists of Notch signaling. Better understanding of the structure, function and regulation of Notch intracellular signaling pathways, as well as its complex crosstalk with other oncogenic signals in breast cancer cells will be essential to ensure rational design and application of new combinatory therapeutic strategies. Novel opportunities have emerged from the discovery of Notch crosstalk with inflammatory and angiogenic cytokines and their links to CSCs. Combinatory treatments with drugs designed to prevent Notch oncogenic signal crosstalk may be advantageous over λ secretase inhibitors (GSIs) alone. In this review, we focus on the more recent advancements in our knowledge of aberrant Notch signaling contributing to breast cancer angiogenesis, as well as its crosstalk with other factors contributing to angiogenesis and CSCs.  相似文献   

3.
4.
5.
The cancer stem cell (CSC) hypothesis was first proposed over 40 years ago. Advances in CSC isolation were first achieved in hematological malignancies, with the first CSC demonstrated in acute myeloid leukemia. However, using similar strategies and technologies, and taking advantage of available surface markers, CSCs have been more recently demonstrated in a growing range of epithelial and other solid organ malignancies, suggesting that the majority of malignancies are dependent on such a compartment.Primary liver cancer consists predominantly of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). It is believed that hepatic progenitor cells (HPCs) could be the origin of some HCCs and ICCs. Furthermore, stem cell activators such as Wnt/β-catenin, TGF-β, Notch and Hedgehog signaling pathways also expedite tumorigenesis, and these pathways could serve as molecular targets to assist in designing cancer prevention strategies. Recent studies indicate that additional factors such as EpCAM, Lin28 or miR-181 may also contribute to HCC progression by targeting HCC CSCs. Various therapeutic drugs that directly modulate CSCs have been examined in vivo and in vitro. However, CSCs clearly have a complex pathogenesis, with a considerable crosstalk and redundancy in signaling pathways, and hence targeting single molecules or pathways may have a limited benefit for treatment. Many of the key signaling molecules are shared by both CSCs and normal stem cells, which add further challenges for designing molecularly targeted strategies specific to CSCs but sparing normal stem cells to avoid side effects. In addition to the direct control of CSCs, many other factors that are needed for the maintenance of CSCs, such as angiogenesis, vasculogenesis, invasion and migration, hypoxia, immune evasion, multiple drug resistance, and radioresistance, should be taken into consideration when designing therapeutic strategies for HCC. Here we provide a brief review of molecular signaling in liver CSCs and present insights into new therapeutic strategies for targeting liver CSCs.  相似文献   

6.
骨髓干细胞包括造血干细胞(HSCs)和间充质干细胞(MSCs),骨髓间充质干细胞(BMSCs)是一类具有自我更新、增殖和多向分化能力的细胞,具有不对称分裂和无限增殖的特点。在肝细胞生长因子(HGF)的作用下,BMSCs可以分化为肝细胞,参与诱导这一分化过程的相关信号通路包括NF-kB信号通路、Notch信号通路、MAPK信号通路、Wnt信号通路和STAT3信号通路。文章主要就BMSCs分化为肝细胞的相关信号通路进行了综述。  相似文献   

7.
Studies in avian models have demonstrated an involvement of retinoid signaling in early neural tube patterning. The roles of this signaling pathway at later stages of spinal cord development are only partly characterized. Here we use Raldh2-null mouse mutants rescued from early embryonic lethality to study the consequences of lack of endogenous retinoic acid (RA) in the differentiating spinal cord. Mid-gestation RA deficiency produces prominent structural and molecular deficiencies in dorsal regions of the spinal cord. While targets of Wnt signaling in the dorsal neuronal lineage are unaltered, reductions in Fibroblast Growth Factor (FGF) and Notch signaling are clearly observed. We further provide evidence that endogenous RA is capable of driving stem cell differentiation. Raldh2 deficiency results in a decreased number of spinal cord derived neurospheres, which exhibit a reduced differentiation potential. Raldh2-null neurospheres have a decreased number of cells expressing the neuronal marker β-III-tubulin, while the nestin-positive cell population is increased. Hence, in vivo retinoid deficiency impaired neural stem cell growth. We propose that RA has separable functions in the developing spinal cord to (i) maintain high levels of FGF and Notch signaling and (ii) drive stem cell differentiation, thus restricting both the numbers and the pluripotent character of neural stem cells.  相似文献   

8.
9.
Nemeth MJ  Bodine DM 《Cell research》2007,17(9):746-758
Hematopoietic stem cells (HSCs) are a rare population of cells that are responsible for life-long generation of blood cells of all lineages. In order to maintain their numbers, HSCs must establish a balance between the opposing cell fates of self-renewal (in which the ability to function as HSCs is retained) and initiation of hematopoietic differentiation. Multiple signaling pathways have been implicated in the regulation of HSC cell fate. One such set of pathways are those activated by the Wnt family of ligands. Wnt signaling pathways play a crucial role during embryogenesis and deregulation of these pathways has been implicated in the formation of solid tumors. Wnt signaling also plays a role in the regulation of stem cells from multiple tissues, such as embryonic, epidermal, and intestinal stem cells. However, the function of Wnt signaling in HSC biology is still controversial. In this review, we will discuss the basic characteristics of the adult HSC and its regulatory microenvironment, the "niche", focusing on the regulation of the HSC and its niche by the Wnt signaling pathways.  相似文献   

10.
Cancer stem cells (CSCs) are a small subpopulation of cells within tumors with capabilities of self-renewal, differentiation, and tumorigenicity when transplanted into an animal host. A number of cell surface markers such as CD44, CD24, and CD133 are often used to identify and enrich CSCs. A regulatory network consisting of microRNAs and Wnt/β-catenin, Notch, and Hedgehog signaling pathways controls CSC properties. The clinical relevance of CSCs has been strengthened by emerging evidence, demonstrating that CSCs are resistant to conventional chemotherapy and radiation treatment and that CSCs are very likely to be the origin of cancer metastasis. CSCs are believed to be an important target for novel anti-cancer drug discovery. Herein we summarize the current understanding of CSCs, with a focus on the role of miRNA and epithelial–mesenchymal transition (EMT), and discuss the clinical application of targeting CSCs for cancer treatment.  相似文献   

11.
In the developing vertebrate retina, progenitor cells initially proliferate but begin to produce postmitotic neurons when neuronal differentiation occurs. However, the mechanism that determines whether retinal progenitor cells continue to proliferate or exit from the cell cycle and differentiate is largely unknown. Here, we report that histone deacetylase 1 (Hdac1) is required for the switch from proliferation to differentiation in the zebrafish retina. We isolated a zebrafish mutant, ascending and descending (add), in which retinal cells fail to differentiate into neurons and glial cells but instead continue to proliferate. The cloning of the add gene revealed that it encodes Hdac1. Furthermore, the ratio of the number of differentiating cells to that of proliferating cells increases in proportion to Hdac activity, suggesting that Hdac proteins regulate a crucial step of retinal neurogenesis in zebrafish. Canonical Wnt signaling promotes the proliferation of retinal cells in zebrafish, and Notch signaling inhibits neuronal differentiation through the activation of a neurogenic inhibitor, Hairy/Enhancer-of-split (Hes). We found that both the Wnt and Notch/Hes pathways are activated in the add mutant retina. The cell-cycle progression and the upregulation of Hes expression in the add mutant retina can be inhibited by the blockade of Wnt and Notch signaling, respectively. These data suggest that Hdac1 antagonizes these pathways to promote cell-cycle exit and the subsequent neurogenesis in zebrafish retina. Taken together, these data suggest that Hdac1 functions as a dual switch that suppresses both cell-cycle progression and inhibition of neurogenesis in the zebrafish retina.  相似文献   

12.
Notch和Wnt信号通路能够调控细胞的分化、增殖、迁移和粘附等多种行为,在胚胎发育、干细胞分化及肿瘤生长等方面发挥多样性的调控作用.血管形成过程中的典型事件包括尖端细胞(tipcell)和柄细胞(stalkcell)分化、柄细胞增殖、内皮细胞迁移和粘附、血管重塑以及动静脉分化等.本文对Notch和Wnt信号通路在血管形成不同阶段的功能作一综述,以期描述Notch和Wnt是怎样在分子水平上协同作用进而调控血管的形成.从两条信号通路的分子水平及复杂信号网络中众多成员协调作用的角度了解血管形成的机制,对于调整肿瘤等涉及血管形成的相关疾病的治疗策略具有一定意义.  相似文献   

13.
B-cell chronic lymphocytic leukemia (CLL), which is the most common lymphoproliferative disorder, displays characteristics consistent with a defect in programmed cell death and exhibit prolonged survival of affected cells in vivo. When recovered from peripheral blood or lymphoid tissues of patients and cultured in vitro, CLL malignant cells rapidly undergo spontaneous apoptosis. CLL B-cells co-culture with different adherent cell types, collectively referred to as stromal cells, induces leukemia cell survival, migration, and drug resistance. In addition, such survival-promoting microenvironments can rescue leukemia cells from cytotoxic therapy, giving way to disease relapse. Quite surprisingly considering that many anti-cancer drugs, including γ-secretase inhibitors, Cyclopamine and Quercetin, were reported to block Notch, Wnt, and Hedgehog anti-apoptotic signaling pathways respectively, the link between the latter anti-apoptotic pathways and bone marrow stromal cells in CLL has been pointed out only recently. Data concerning the pathogenesis of CLL have been critically reviewed in regards to the growing body of evidence indicating deregulations of Notch, Wnt and Hedgehog anti-apoptotic signaling pathways in the stromal microenvironment of affected cells.  相似文献   

14.
15.
Notch信号传导通路是影响细胞命运决定的重要通路之一,相邻细胞间通过Notch受体传递信号可以调节包括干细胞在内的多种细胞的分化、增殖和凋亡,影响器官形成和形态发生.Notch信号传导通路中某些分子的基因突变与多种疾病的发生发展有关.在深入研究Notch信号传导通路的基础上,以其作为靶点设计药物,对于治疗包括肿瘤、CADASIL等遗传性疾病在内的相关疾病,或发展干细胞医疗技术治疗阿尔茨海默症(Alzheimer!sdisease,AD)、帕金森病、糖尿病等细胞组织功能减退或受损性疾病具有重要的科学意义和应用价值.  相似文献   

16.
The GSK-3 kinases, GSK-3α and GSK-3β, have a central role in regulating multiple cellular processes such as glycogen synthesis, insulin signaling, cell proliferation and apoptosis. GSK-3β is the most well studied, and was originally described for its role in regulating glycogen synthase. GSK-3β has been studied as a participant in the oncogenic process in a variety of cancers due to its intersection with the PTEN/PI3K/AKT and RAS/RAF/MEK/ERK pathways. Dysregulated signaling through the Notch family of receptors can also promote oncogenesis. Normal Notch receptor signaling regulates cell fate determination in stem cell pools. GSK-3β and Notch share similar targets such β-catenin and the WNT pathway. WNT and β-catenin are involved in several oncogenic processes including those of the colon. In addition, GSK-3β may directly regulate aspects of Notch signaling. This review describes how crosstalk between GSK-3β and Notch can promote oncogenesis, using colon cancer as the primary example.  相似文献   

17.
Wnt signaling is a hallmark of all embryonic development with multiple roles at multiple developmental time points. Wnt signaling is also important in the development of several organs, one of which is the inner ear, where it participates in otic specification, the formation of vestibular structures, and the development of the cochlea. In particular, we focus on Wnt signaling in the auditory organ, the cochlea. Attempting to dissect the multiple Wnt signaling pathways in the mammalian cochlea is a challenging task due to limited expression data, particularly at proliferating stages. To offer predictions about Wnt activity, we compare cochlear development with that of other biological systems such as Xenopus retina, brain, cancer cells and osteoblasts. Wnts are likely to regulate development through crosstalk with other signaling pathways, particularly Notch and FGF, leading to changes in the expression of Sox2 and proneural (pro-hair cell) genes. In this review we have consolidated the known signaling pathways in the cochlea with known developmental roles of Wnts from other systems to generate a potential timeline of cochlear development.  相似文献   

18.
New aspects of Wnt signaling pathways in higher vertebrates   总被引:40,自引:0,他引:40  
The development of tissues and organs in embryos is controlled by an interplay of several signaling pathways that cross-talk to provide positional information and induce cell fate specification. One of the major signaling systems is the Wnt pathway which was recently shown to split into several intracellular branches which regulate multiple cellular functions. In the present review, we discuss novel members and their role in the diversification of the Wnt pathway. Many of these components were studied in model organisms such as C.elegans, Drosophila and Xenopus. Here we focus on recent studies of mutant phenotypes in Mouse and Zebrafish which implicate members of the Wnt pathway in processes such as axis and mesoderm formation, initiation of organ development and stem cell differentiation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号