首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-day-old etiolated seedlings of Pharbitis nil were exposedto red light for 10 min and sprayed with N6-benzyladenine beforetransfer to a 48-h inductive dark period, after which they weregrown under continuous white light. A second red irradiationpromoted flowering when given at the 5 and 24th hour of theinductive dark period but inhibited flowering at the 10 and15th hour. Far-red light inhibited flowering when given at anytime during the first 24 h of the dark period. Red/far-red reversibilitywas clearly observed at the 0, 5, 10 and 24th hour, but notat the 15th hour when both red and far-red lights completelyinhibited flowering. The action spectrum for the inhibition of flowering at the 15thhour of the inductive dark period had a sharply defined peakat 660 nm and closely resembled the absorption spectrum of thePR form of phytochrome. The photoreceptors involved in thesephotoreactions are discussed. (Received June 10, 1983; Accepted July 6, 1983)  相似文献   

2.
A study was made of the effects of various durations, intensities and combinations of red and far-red light interruptions on the flowering responses of Xanthium pensylvanicum Wallr. A dual response to treatments of far-red light was observed. In short dark periods, far-red light alone did not greatly affect flowering but was able to overcome the inhibition of flowering caused by red light. In dark periods longer than 15 hours, far-red inhibited flowering and added to rather than overcame the inhibition by red light. The dark period length required for far-red inhibition remained the same whether far-red was given at the start or at the eighth hour of darkness.

In 48-hour dark periods Xanthium showed 3 responses to additions of red and far-red light breaks: A) response to red light; B) response to far-red light; and C) response to red followed by far-red light. Red light given any time in the first 30 hours of darkness overcame the inhibitory effect of far-red light given at either the start or the eighth hour of darkness. Red light given later than the thirtieth hour did not overcome the far-red effect.

Approximately the same energy of red light was required to overcome the inhibitory effect of far-red at the second hour of darkness as was required to produce maximum red light inhibition at the eighth hour. Although far-red light was most inhibitory when given early in a long dark period, approximately the same energy of far-red light was required to saturate the far-red response at the fourth, eighth and sixteenth hours.

The results are discussed in relation to other reports of far-red inhibition of flowering in short-day plants.

  相似文献   

3.
Floral induction in seedlings of Pharbitis nil strain Violet, with one cotyledon removed, was manipulated by applying various ethylene treatments to the remaining cotyledon during a 16 hour inductive dark period. Exposure of cotyledons to ethylene (100 microliters per liter) for 4 hours at different times during the dark period inhibited flowering to some extent, with inhibition being greater towards the end of the dark period. RNA from cotyledons given a 16 hour dark period (induced) or exposed to 100 microliters per liter ethylene throughout the dark period, which completely inhibited flowering, was examined. The poly(A)+RNA was translated in vitro using a wheat germ system, and the resulting translation products were analyzed by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. There were substantial qualitative and quantitative differences between the poly(A)+RNA extracted from induced cotyledons and that from those exposed to ethylene throughout the dark period. Some of these changes are similar to those observed when flowering was inhibited by photoperiodic treatments (M Lay-Yee, RM Sachs, MS Reid 1987 Planta. In press). The significance of these findings to our understanding of the molecular control of flower induction is discussed.  相似文献   

4.
Under the conditions applied in our laboratory 4 1/2 days old plants ofChenopodium rubrum require 2–3 photoperiodic cycles for maximal flowering response, whereas 2 1/2 days old plants are able to flower after having obtained a single inductive cycle. The period length of the free-running rhythm of flowering observed in 2 1/2 days old plants after a single transfer from light to darkness is 30h and the first peak of flowering occurs at about hour 12 in darkness. When a cycle consisting of 16h darkness and 8h light or of 8h darkness and 8h light precedes the long dark period the rhythm is rephased. Rephasing is greater when the light commenced to act on the positive slope of the first peak of the free running rhythm than when it impinged on the negative slope. With an 8h interruption of darkness by light rhythm phase is controlled by the light-on, as well as by the light-off signal. Feeding 0.4 M glucose during the long period of darkness enhanced the amplitude of the flowering response and, moreover, substituted for one photoperiodic cycle.  相似文献   

5.
A single dark period of longer than 8 hr induced flowering inLemna paucicostata 441 cultured in E medium. Monochromatic lightsof 450, 550, 650 and 750 nm with a half-power bandwidth of 9nm given for 10 min at the 8th hour of a 14-hr dark period inhibitedflowering. The fluence rates required for 50% inhibition were10, 0.5, 0.1 and 3 µmol m–2. sec–1, respectively.When applied between the 4th and the 10th hour of the dark period,lights of 450, 550 and 650 nm were inhibitory showing a maximumeffect at the 8th hour. But 750-nm light completely inhibitedflowering when applied at any time during the first 8 hr ofthe dark period. The inhibitory effect of 750-nm light givenat the beginning of the dark period was totally reversed bya subsequent exposure to 650-nm light, and the fluence-responsecurves for the effect of 750-nm light given at the 0, 4th and8th hour were essentially the same. This suggests that the presenceof PFR is crucial for the floral initiation throughout the first8 hr of the inductive dark period. The role of phytochrome inthe photoperiodic flower induction of L. paucicostata is discussed. (Received January 4, 1982; Accepted March 19, 1982)  相似文献   

6.
The involvement of abscisic acid (ABA) and indole-3-acetic acid (IAA) in the regulation of flowering of Pharbitis nil was investigated through exogenous applications and analyses of endogenous levels. Both hormones inhibited the flowering of P. nil when they were applied before or after a single 15-h dark treatment. The inhibitory effect of ABA and IAA was significant when they were applied before the dark treatment, and the application to plumules was more effective than that to cotyledons. In all applications, the inhibitory effect of IAA was stronger than that of ABA. Endogenous levels of ABA and IAA in the plumules were compared between flower-inductive (15-h dark treatment) and noninductive (continuous light) light conditions. There was no significant difference in the ABA level between light and dark conditions, whereas the level of IAA was decreased by the dark treatment. These results suggest that biosynthesis and/or catabolism of IAA is affected by the light treatment and therefore may be involved in the regulation of early flowering processes in the apex. The inhibitory effects of ABA and IAA were reversed by an application of gibberellin A3, indicating that gibberellin A3 counteracts the flowering processes affected by ABA and IAA. Application of aminoethoxyvinylglycine restored the flowering response inhibited by IAA, which suggests the possibility that the inhibitory effect of IAA is the result of enhanced ethylene biosynthesis. Received November 22, 1996; accepted February 17, 1997  相似文献   

7.
Flowering can be modified by gibberellins (GAs) in Pharbitis nil Chois. in a complex fashion depending on GA type, dosage, and the timing of treatment relative to a single inductive dark period. Promotion of flowering occurs when GAs are applied 11 to 17 hours before a single inductive dark period. When applied 24 hours later the same GA dosage is inhibitory. Thus, depending on their activity and the timing of application there is an optimum dose for promotion of flowering by any GA, with an excessive dose resulting in inhibition. Those GAs highly promotory for flowering at low doses are also most effective for stem elongation (2,2-dimethyl GA4 GA32 > GA3 > GA5 > GA7 > GA4). However, the effect of GAs on stem elongation contrasts markedly with that on flowering. A 10- to 50-fold greater dose is required for maximum promotion of stem elongation, and the response is not influenced by time of application relative to the inductive dark period. These differing responses of flowering and stem elongation raise questions about the use of relatively stable, highly bioactive GAs such as GA3 to probe the flowering response. It is proposed that the `ideal' GAs for promoting flowering may be highly bioactive but with only a short lifetime in the plant and, hence, will have little or no effect on stem elongation.  相似文献   

8.
Lemna paucicostata 441 exposed to a single dark period of variouslengths showed a rhythmic flowering response with a 22- to 24-hperiod, even when the dark period was preceded by continuouslight. The critical night length (about 12 h) was scarcely influencedby pretreatment with 8D–4L (8 h of darkness followed by4 h of light), 8D–8L or 8D–12L. However, the rhythmof the response in the second cycle was markedly damped by thepretreatment with 8D–4L or 8D–12L, and was slightlyamplified by 8D–8L. The flowering response to a red-light interruption given atdifferent times in the inductive dark period also showed circadianrhythmicity even when the dark period was preceded by continuouslight, and this rhythmicity was scarcely influenced by a dark-lighttreatment given prior to the inductive dark period. A red-lightinterruption given at the 6th or 14th hour of the dark periodmarkedly shifted the phase of the rhythm of the response tothe length of the following dark period (the former delayedand the latter advanced), but that given at the same phase markedlyweakened and disturbed the rhythmicity of the response to ared-light interruption given in the following dark period. (Received March 21, 1992; Accepted June 12, 1992)  相似文献   

9.
The long-day plant Lemna gibba L., strain G3 exhibits a relatively low sensitivity to short, white-light interruptions given during the dark period of a short-day cycle. However, the plants are fairly sensitive to low-intensity red light treatments given during a 15-hour dark period on the third day of a 2LD-(9L:15D)-2LD-7SD schedule. Far-red light is almost as effective as red light, and attempts to reverse the red light response with subsequent far-red light treatments have not been successful. Blue light proved to be without effect. When plants were grown on a 48-hour cycle with 15 minutes of red light every 4 hours during the dark period, the critical daylength was reduced from about 32 hours to slightly less than 12 hours.

Continuous red light induced a fairly good flowering response. However, as little as 1 hour of white light each day gave a significant improvement in the flowering response over that of the continuous red light control. White light of 600 to 700 ft-c was more effective than white light of 60 to 70 ft-c. The white light was much more effective when divided into 2 equal exposures given 8 to 12 hours apart. These results suggest an increase in light sensitivity with regard to flower induction about 8 to 10 hours after the start of the light period.

  相似文献   

10.
Hsu JC  Hamner KC 《Plant physiology》1967,42(5):725-730
An attempt was made to determine the involvement of an endogenous circadian rhythm in the flowering response of the long-day plant Hyoscyamus niger L. grown in a modified White's medium. Both variable-cycle-length and light interruption experiments were employed in this attempt. In the variable-cycle experiments, plants were subjected to light periods of 6, 12, or 18 hours followed by varying lengths of darkness. The total lengths of the cycles varied from 12 to 72 hours. In experiments utilizing a 6-hour photoperiod, a high level of flowering occurred in cycle lengths of 12, 36, and 60 hours. Flowering was suppressed in the 24-, 48-, and 72-hour cycles. When a 12-hour photoperiod was used the flowering response was low between 24 and 36 hours and flowering did not indicate a rhythmic response. When an 18-hour photoperiod was used, the flowering response was suppressed in the 36- and 60-hour cycles.

Light-break experiments were conducted to study further the flowering response in Hyoscyamus. These experiments consisted of a 6-hour main photoperiod followed by varying lengths of darkness to make cycles of 24, 48, and 72 hours. At given intervals the dark period was interrupted by 2-hour light breaks. In a 24-hour cycle, flowering was promoted when a light break was given at either the twelfth or eighteenth hour of the cycle. In a 48-hour cycle, flowering was strongly promoted by light breaks given near the beginning or at the end of the dark period. In a 72-hour cycle, light breaks given at the eighteenth, forty-second, and sixty-sixth hour of the cycle stimulated flowering as compared with light breaks given at the thirtieth and fifty-fourth hour. These results are indicative of the involvement of an endogenous rhythm in the flowering response of Hyoscyamus niger.

  相似文献   

11.
Intracellular Carbon Partitioning in Chlamydomonas reinhardtii   总被引:1,自引:1,他引:0       下载免费PDF全文
Klein U 《Plant physiology》1987,85(4):892-897
Using enzymic and isotope techniques the intracellular partitioning of newly fixed carbon was studied in synchronized cells of Chlamydomonas reinhardtii. Starch and growth metabolism, i.e. the use of carbon in biosynthesis, were found to be the major sinks for photosynthetically fixed carbon in the alga. Sucrose does not accumulate in significant quantities. The amount of carbon partitioned either into starch or growth varies during the 12 hour light/12 hour dark cell cycle. Starch is accumulated at the beginning and at the end of the light period while a net breakdown is observed in the middle of the light period and in the dark. In contrast, nonsynchronized cells accumulate starch all the time in the light which suggests that carbon partitioning is controlled by the cell cycle. Labeled bicarbonate is incorporated into starch even at times when the total intracellular level of starch is decreasing. This indicates a turnover of the starch pool in the light with synthesis and degradation occurring simultaneously and at different rates.  相似文献   

12.
Floral Inhibition of Biloxi Soybean During a 72-hour Cycle   总被引:1,自引:1,他引:0       下载免费PDF全文
Shumate WH  Reid HB  Hamner KC 《Plant physiology》1967,42(11):1511-1518
The inhibitory effect of light interruptions given during the photophobe phases of a 72-hour cycle was studied with Biloxi soybean [Glycine max (L.) Merr.]. The basic 72-hour cycle consisted of 8 hours of light followed by 64 hours of darkness and was repeated 7 times. Supplementary white light treatments given at the twenty-fourth and/or forty-eighth hour of the cycle (photophil phases) promoted the flowering levels of the controls and kept light treatments given at the most inhibitory points from inhibiting flowering completely. Such supplementary light treatments did not affect the time of maximum sensitivity to light interruptions. When 30-minute light breaks were used, maximum inhibition occurred at the 16-, 43-, and 63-hour points. The duration of the light breaks affected the time of maximum inhibition when given during the second photophobe phase. The time of maximum inhibition occurred earlier with 4-hour light breaks than with either 3-minute or 2-hour light interruptions.

Three-minute red light interruptions produced essentially the same effect as 3-minute white light interruptions. Such treatments inhibited flowering completely in the first photophobe phase, inhibited flowering to only a small degree in the second photophobe phase, and inhibited flowering to an intermediate degree in the third photophobe phase. Far-red light interruptions strongly inhibited flowering in the first photophobe phase, especially when given early in the dark period. Three minutes of supplementary white light given at the twenty-fourth or forty-eighth hour of the cycle partially overcame the inhibitory effect of far-red light. Four hours of supplementary white light at these times completely overcame the far-red inhibition.

  相似文献   

13.
A short-day duckweed, Lemna paucicostata 6746, was exposed tocontinuous darkness at 26?C, and the changes in the floral parameters(3) due to far-red and/or red light pulse given at various timesof the dark period were studied. Parameters a (vegetative growth rate) and (flowering ratio)were respectively decreased and increased with a far-red lightpulse given at the outset of the dark period. The decreaseda and the increased remained almost unchanged until the 7thhour, but returned to their initial levels thereafter. The far-redlight actions on a and were reversed by subsequent exposureto red light. Parameter P1 (pre-flower induction period) wasextended by 1 day when far-red and/or red pulse was given atabout the 7th hour of the dark period. A far-jed pulse givenat the outset of the dark period only affected parameter P2(flower induction period). Although the sensitivity of P2 tored light increased with time, its sensitivity to far-red lightremained constant and at about the 7th hour was equally sensitiveto far-red and red lights. Both red and far-red pulses givenlater than the 7th hour were increasingly ineffective on P2.The red/far-red reversibility occurred only for the action onP2 of the far-red pulse applied during the early dark period.Parameter P4 (flower production period) varied rhythmicallyin length with a far-red puke, the maximum shortening and extensionbeing induced by the pulse given at about the 7th and 19th hours,respectively. The sensitivity of P4 to red light also changedrhythmically with an inverse phase angle to the rhythmic responseto farred light, and the far-red and red light actions werereversed respectively by subsequent red and far-red lights. These findings suggested that multiple timing devices includingan hourglass-type clock and a circadian clock are involved induckweed flowering. (Received October 25, 1978; )  相似文献   

14.
Permeant weak acids and auxins have been shown to reduce the cytosplasmic pH in several systems. Lactic, citric, formic, butyric, salicylic, parahydroxybenzoic, propionic acid, and sodium propionate inhibited the flowering response of Pharbitis nil seedlings when applied immediately before an inductive dark period. The acidic auxins IAA, indolebutyric, and α-naphtaleneacetic acid, as well as the nonacidic auxin α-naphtaleneaceteamid, also inhibited the flowering response. Inhibition was generally more pronounced with a 12-hour than with a 16-hour dark period. Salicylic acid and sodium propionate shifted the response curve of the dark period by about 2 hours. Salicyclic acid, sodium propionate, and indolebutyric acid were inhibitory when applied during the first few hours of the dark period. The permeant weak bases NH4Cl, procaine, and trisodium citrate enhanced the flowering response. NH4Cl reduced the length of the critical dark period. The inhibition of flowering by acids and auxins as well as the promotion of flowering by bases was obtained even when only the cotyledons had been treated. The inhibition of floral induction by auxins may not be dependent on their effect on the cytoplasmic pH.  相似文献   

15.
Treatment of whole Pharbitis nil seedlings or cotyledons with indole butyric acid (IBA) immediately before an inductive dark period greatly inhibited flowering. Treatment of the shoot tip alone with IBA had little or no effect. 1-Aminocyclopropane 1-carboxylic acid, which increased ethylene production by the seedlings much more than IBA, had no effect on the flowering response. Pretreatment of seedlings with the ethylene biosynthesis inhibitor aminooxyacetic acid or with the inhibitor of ethylene action silver thiosulfate did not reduce the inhibitory effect of IBA on flower induction. We concluded, therefore, that the auxin-induced inhibition of flowering of P. nil was not mediated by ethylene.  相似文献   

16.
17.
In a Chlorella culture growing synchronously at pH 6.3 undera 12 hr light/12 hr dark regime, DNA replication occurs betweenthe 8th and the 12th hour of the cycle, the main period of proteinand chlorophyll synthesis occurring between the 4th and 12thhour of the cycle. When the culture is transferred to alkalinepH at any time up to the 8 hr of the cycle, autospore releaseis prevented, and the pattern of synthesis of DNA, protein andchlorophyll is altered. However, when the culture is transferredto alkaline conditions after the 8th hour of the cycle, thepattern follows that of a culture growing at pH 6.3 with respectto cell number and volume, as well as protein, chlorophyll andDNA contents. Thus, a transition point seems to occur afterthe 8 hr of the cycle. The existence of such a point was alsodemonstrated by reciprocal experiments in which Chlorella wascultured at an alkaline pH and transferred to pH 6.3 at varioustimes in the cell cycle. 1 Present address: Applied Research Institute, Ben-Gurion Universityof the Negev, P.O. Box 1025, Beer-Sheva 84110, Israel. (Received October 2, 1981; Accepted January 20, 1982)  相似文献   

18.
The effect of 6-benzylaminopurine (BAP) on floweringand on endogenous levels of isoprenoid cytokinins wasinvestigated in explanted terminal shoots of Chenopodium rubrum cultivated in vitro. Themother plants were grown under continuous light andexplants were cut off when the 6th leaf primordiumoriginated at the shoot apex. The explants wereexposed to one dark period of 13 hours inductive forflowering or to continuous light on medium with orwithout BAP (0.05;0.2;0.4 mg.l-1). Undernon-inductive conditions no flowering was observedeither in the control or after BAP treatment. Afterreceiving one inductive dark period, the controlexplants flowered. However, BAP application either atthe beginning of the inductive dark period and/orduring the following light cultivation inhibitedflowering and stimulated initiation and growth of leafprimordia. In the case of the most efficient BAPconcentration (0.05 mg.l-1) flowering wasinhibited by 80% and the number of leaf primordia wasincreased by 3. Explantation caused a significantincrease in the total amount of endogenous cytokininsin the explants within first 13 h, provided they werekept in light. When explants were kept in darkness,only a slight increase in cytokinin levels wasobserved. BAP treatment had no influence on the levelsof endogenous cytokinins either in light or indarkness. We may thus conclude, that BAP applicationinhibited flowering of photoperiodically inducedterminal shoot explants and stimulated leaf primordiaformation with no significant effect on changes inlevels of endogenous isoprenoid cytokinins. This maysuggest the direct ability of BAP to regulate morphogenesis.  相似文献   

19.
Salisbury FB 《Plant physiology》1981,67(6):1230-1238
Six experiments studied the effects of low levels of red and far-red light upon the initiation of measurement of the dark period in the photoperiodic induction of flowering in Xanthium strumarium L. (cocklebur), a short-day plant, and compared effects with those of comparable light treatments applied for 2 hours during the middle of a 16-hour inductive dark period. Red light, or red plus far-red, at levels that inhibit flowering when applied during the middle of the inductive dark period, either had no effect on the initiation of dark measurement (i.e., were perceived as darkness), or they delayed the initiation of dark measurement by various times up to the full interval of exposure (2 hours). Far-red light alone had virtually no effect either at the beginning or in the middle of the dark period. These results confirm that time measurement in the photoperiodic response of short-day Xanthium plants is not simply the time required for metabolic dark conversion of phytochrome. Results also suggest that the pigment system (phytochrome?) and/or responses to it may be significantly different as they function during twilight (initiation of dark measurement), and as they function during a light break several hours later. Possible mechanisms by which cocklebur plants detect the change from light to darkness are discussed.Comparing experimental results with spectral light measurements during twilight and with measurements of light from the full moon led to two conclusions: First, light levels pass from values perceived by the plant as full light to values perceived as complete darkness in only about 5.5 to 11.5 minutes, although twilight as perceived by the human eye lasts well over 30 minutes. Second, cocklebur plants probably do not respond to light from the full moon, even when most sensitive, 7 to 9 hours after the beginning of darkness.  相似文献   

20.
The role of endogenous gibberellin (GA) in the flowering of the short-day plant, Pharbitis nil, was investigated by using uniconazole, which is a specific inhibitor of GA biosynthesis. Both the endogenous GA level and flowering response decreased with increasing concentration of uniconazole applied via the roots. The strongest inhibition of flowering was observed when uniconazole was applied one day before a 15-h dark treatment. The inhibition by uniconazole was overcome by an application of GAs to the plumules, the order of effectiveness of the endogenous GAs in P. nil being GA1 ≧GA20>GA19≧GA44>GA53»GAH. This is the first report of the correlation between the endogenous GA level and flowering response in P. nil. It was found that endogenous GAs were required for the flowering of P. nil during or just after the dark period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号