首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Garg A  Kaur H  Raghava GP 《Proteins》2005,61(2):318-324
The present study is an attempt to develop a neural network-based method for predicting the real value of solvent accessibility from the sequence using evolutionary information in the form of multiple sequence alignment. In this method, two feed-forward networks with a single hidden layer have been trained with standard back-propagation as a learning algorithm. The Pearson's correlation coefficient increases from 0.53 to 0.63, and mean absolute error decreases from 18.2 to 16% when multiple-sequence alignment obtained from PSI-BLAST is used as input instead of a single sequence. The performance of the method further improves from a correlation coefficient of 0.63 to 0.67 when secondary structure information predicted by PSIPRED is incorporated in the prediction. The final network yields a mean absolute error value of 15.2% between the experimental and predicted values, when tested on two different nonhomologous and nonredundant datasets of varying sizes. The method consists of two steps: (1) in the first step, a sequence-to-structure network is trained with the multiple alignment profiles in the form of PSI-BLAST-generated position-specific scoring matrices, and (2) in the second step, the output obtained from the first network and PSIPRED-predicted secondary structure information is used as an input to the second structure-to-structure network. Based on the present study, a server SARpred (http://www.imtech.res.in/raghava/sarpred/) has been developed that predicts the real value of solvent accessibility of residues for a given protein sequence. We have also evaluated the performance of SARpred on 47 proteins used in CASP6 and achieved a correlation coefficient of 0.68 and a MAE of 15.9% between predicted and observed values.  相似文献   

2.
Kaur H  Raghava GP 《Proteins》2004,55(1):83-90
In this paper a systematic attempt has been made to develop a better method for predicting alpha-turns in proteins. Most of the commonly used approaches in the field of protein structure prediction have been tried in this study, which includes statistical approach "Sequence Coupled Model" and machine learning approaches; i) artificial neural network (ANN); ii) Weka (Waikato Environment for Knowledge Analysis) Classifiers and iii) Parallel Exemplar Based Learning (PEBLS). We have also used multiple sequence alignment obtained from PSIBLAST and secondary structure information predicted by PSIPRED. The training and testing of all methods has been performed on a data set of 193 non-homologous protein X-ray structures using five-fold cross-validation. It has been observed that ANN with multiple sequence alignment and predicted secondary structure information outperforms other methods. Based on our observations we have developed an ANN-based method for predicting alpha-turns in proteins. The main components of the method are two feed-forward back-propagation networks with a single hidden layer. The first sequence-structure network is trained with the multiple sequence alignment in the form of PSI-BLAST-generated position specific scoring matrices. The initial predictions obtained from the first network and PSIPRED predicted secondary structure are used as input to the second structure-structure network to refine the predictions obtained from the first net. The final network yields an overall prediction accuracy of 78.0% and MCC of 0.16. A web server AlphaPred (http://www.imtech.res.in/raghava/alphapred/) has been developed based on this approach.  相似文献   

3.
Hamilton N  Burrage K  Ragan MA  Huber T 《Proteins》2004,56(4):679-684
We describe a new method for using neural networks to predict residue contact pairs in a protein. The main inputs to the neural network are a set of 25 measures of correlated mutation between all pairs of residues in two "windows" of size 5 centered on the residues of interest. While the individual pair-wise correlations are a relatively weak predictor of contact, by training the network on windows of correlation the accuracy of prediction is significantly improved. The neural network is trained on a set of 100 proteins and then tested on a disjoint set of 1033 proteins of known structure. An average predictive accuracy of 21.7% is obtained taking the best L/2 predictions for each protein, where L is the sequence length. Taking the best L/10 predictions gives an average accuracy of 30.7%. The predictor is also tested on a set of 59 proteins from the CASP5 experiment. The accuracy is found to be relatively consistent across different sequence lengths, but to vary widely according to the secondary structure. Predictive accuracy is also found to improve by using multiple sequence alignments containing many sequences to calculate the correlations.  相似文献   

4.
In this paper we propose constructing an improved two-level neural network to predict protein secondary structure. Firstly, we code the whole protein composition information as the inputs to the first-level network besides the evolutionary information. Secondly, we calculate the reliability score for each residue position based on the output of the first-level network, and the role of the second-level network is to take full advantage of the residues with a higher reliability score to impact the neighboring residues with a lower one for improving the whole prediction accuracy. Thirdly, considering it is indeed a problem that the target protein can be lost in the multiple sequence alignment we propose to code single sequence into the second-level network. The experimental results show that our proposed method can efficiently improve the prediction accuracy.  相似文献   

5.
MOTIVATION: What constitutes a baseline level of success for protein fold recognition methods? As fold recognition benchmarks are often presented without any thought to the results that might be expected from a purely random set of predictions, an analysis of fold recognition baselines is long overdue. Given varying amounts of basic information about a protein-ranging from the length of the sequence to a knowledge of its secondary structure-to what extent can the fold be determined by intelligent guesswork? Can simple methods that make use of secondary structure information assign folds more accurately than purely random methods and could these methods be used to construct viable hierarchical classifications? EXPERIMENTS PERFORMED: A number of rapid automatic methods which score similarities between protein domains were devised and tested. These methods ranged from those that incorporated no secondary structure information, such as measuring absolute differences in sequence lengths, to more complex alignments of secondary structure elements. Each method was assessed for accuracy by comparison with the Class Architecture Topology Homology (CATH) classification. Methods were rated against both a random baseline fold assignment method as a lower control and FSSP as an upper control. Similarity trees were constructed in order to evaluate the accuracy of optimum methods at producing a classification of structure. RESULTS: Using a rigorous comparison of methods with CATH, the random fold assignment method set a lower baseline of 11% true positives allowing for 3% false positives and FSSP set an upper benchmark of 47% true positives at 3% false positives. The optimum secondary structure alignment method used here achieved 27% true positives at 3% false positives. Using a less rigorous Critical Assessment of Structure Prediction (CASP)-like sensitivity measurement the random assignment achieved 6%, FSSP-59% and the optimum secondary structure alignment method-32%. Similarity trees produced by the optimum method illustrate that these methods cannot be used alone to produce a viable protein structural classification system. CONCLUSIONS: Simple methods that use perfect secondary structure information to assign folds cannot produce an accurate protein taxonomy, however they do provide useful baselines for fold recognition. In terms of a typical CASP assessment our results suggest that approximately 6% of targets with folds in the databases could be assigned correctly by randomly guessing, and as many as 32% could be recognised by trivial secondary structure comparison methods, given knowledge of their correct secondary structures.  相似文献   

6.
Kaur H  Raghava GP 《FEBS letters》2004,564(1-2):47-57
In this study, an attempt has been made to develop a neural network-based method for predicting segments in proteins containing aromatic-backbone NH (Ar-NH) interactions using multiple sequence alignment. We have analyzed 3121 segments seven residues long containing Ar-NH interactions, extracted from 2298 non-redundant protein structures where no two proteins have more than 25% sequence identity. Two consecutive feed-forward neural networks with a single hidden layer have been trained with standard back-propagation as learning algorithm. The performance of the method improves from 0.12 to 0.15 in terms of Matthews correlation coefficient (MCC) value when evolutionary information (multiple alignment obtained from PSI-BLAST) is used as input instead of a single sequence. The performance of the method further improves from MCC 0.15 to 0.20 when secondary structure information predicted by PSIPRED is incorporated in the prediction. The final network yields an overall prediction accuracy of 70.1% and an MCC of 0.20 when tested by five-fold cross-validation. Overall the performance is 15.2% higher than the random prediction. The method consists of two neural networks: (i) a sequence-to-structure network which predicts the aromatic residues involved in Ar-NH interaction from multiple alignment of protein sequences and (ii) a structure-to structure network where the input consists of the output obtained from the first network and predicted secondary structure. Further, the actual position of the donor residue within the 'potential' predicted fragment has been predicted using a separate sequence-to-structure neural network. Based on the present study, a server Ar_NHPred has been developed which predicts Ar-NH interaction in a given amino acid sequence. The web server Ar_NHPred is available at and (mirror site).  相似文献   

7.
MOTIVATION: The prediction of beta-turns is an important element of protein secondary structure prediction. Recently, a highly accurate neural network based method Betatpred2 has been developed for predicting beta-turns in proteins using position-specific scoring matrices (PSSM) generated by PSI-BLAST and secondary structure information predicted by PSIPRED. However, the major limitation of Betatpred2 is that it predicts only beta-turn and non-beta-turn residues and does not provide any information of different beta-turn types. Thus, there is a need to predict beta-turn types using an approach based on multiple sequence alignment, which will be useful in overall tertiary structure prediction. RESULTS: In the present work, a method has been developed for the prediction of beta-turn types I, II, IV and VIII. For each turn type, two consecutive feed-forward back-propagation networks with a single hidden layer have been used where the first sequence-to-structure network has been trained on single sequences as well as on PSI-BLAST PSSM. The output from the first network along with PSIPRED predicted secondary structure has been used as input for the second-level structure-to-structure network. The networks have been trained and tested on a non-homologous dataset of 426 proteins chains by 7-fold cross-validation. It has been observed that the prediction performance for each turn type is improved significantly by using multiple sequence alignment. The performance has been further improved by using a second level structure-to-structure network and PSIPRED predicted secondary structure information. It has been observed that Type I and II beta-turns have better prediction performance than Type IV and VIII beta-turns. The final network yields an overall accuracy of 74.5, 93.5, 67.9 and 96.5% with MCC values of 0.29, 0.29, 0.23 and 0.02 for Type I, II, IV and VIII beta-turns, respectively, and is better than random prediction. AVAILABILITY: A web server for prediction of beta-turn types I, II, IV and VIII based on above approach is available at http://www.imtech.res.in/raghava/betaturns/ and http://bioinformatics.uams.edu/mirror/betaturns/ (mirror site).  相似文献   

8.
A neural network-based method has been developed for the prediction of beta-turns in proteins by using multiple sequence alignment. Two feed-forward back-propagation networks with a single hidden layer are used where the first-sequence structure network is trained with the multiple sequence alignment in the form of PSI-BLAST-generated position-specific scoring matrices. The initial predictions from the first network and PSIPRED-predicted secondary structure are used as input to the second structure-structure network to refine the predictions obtained from the first net. A significant improvement in prediction accuracy has been achieved by using evolutionary information contained in the multiple sequence alignment. The final network yields an overall prediction accuracy of 75.5% when tested by sevenfold cross-validation on a set of 426 nonhomologous protein chains. The corresponding Q(pred), Q(obs), and Matthews correlation coefficient values are 49.8%, 72.3%, and 0.43, respectively, and are the best among all the previously published beta-turn prediction methods. The Web server BetaTPred2 (http://www.imtech.res.in/raghava/betatpred2/) has been developed based on this approach.  相似文献   

9.
The PSIPRED protein structure prediction server   总被引:42,自引:0,他引:42  
SUMMARY: The PSIPRED protein structure prediction server allows users to submit a protein sequence, perform a prediction of their choice and receive the results of the prediction both textually via e-mail and graphically via the web. The user may select one of three prediction methods to apply to their sequence: PSIPRED, a highly accurate secondary structure prediction method; MEMSAT 2, a new version of a widely used transmembrane topology prediction method; or GenTHREADER, a sequence profile based fold recognition method. AVAILABILITY: Freely available to non-commercial users at http://globin.bio.warwick.ac.uk/psipred/  相似文献   

10.
ABSTRACT: BACKGROUND: Local alignment programs often calculate the probability that a match occurred by chance. The calculation of this probability may require a "finite-size" correction to the lengths of the sequences, as an alignment that starts near the end of either sequence may run out of sequence before achieving a significant score. FINDINGS: We present an improved finite-size correction that considers the distribution of sequence lengths rather than simply the corresponding means. This approach improves sensitivity and avoids substituting an ad hoc length for short sequences that can underestimate the significance of a match. We use a test set derived from ASTRAL to show improved ROC scores, especially for shorter sequences. CONCLUSIONS: The new finite-size correction improves the calculation of probabilities for a local alignment. It is now used in the BLAST + package and at the NCBI BLAST web site (http://blast.ncbi.nlm.nih.gov).  相似文献   

11.
Wrabl JO  Grishin NV 《Proteins》2004,54(1):71-87
An algorithm was developed to locally optimize gaps from the FSSP database. Over 2 million gaps were identified from all versus all FSSP structure comparisons, and datasets of non-identical gaps and flanking regions comprising between 90,000 and 135,000 sequence fragments were extracted for statistical analysis. Relative to background frequencies, gaps were enriched in residue types with small side chains and high turn propensity (D, G, N, P, S), and were depleted in residue types with hydrophobic side chains (C, F, I, L, V, W, Y). In contrast, regions flanking a gap exhibited opposite trends in amino acid frequencies, i.e., enrichment in hydrophobic residues and a high degree of secondary structure. Log-odds scores of residue type as a function of position in or around a gap were derived from the statistics. Three simple experiments demonstrated that these scores contained significant predictive information. First, regions where gaps were observed in single sequences taken from HOMSTRAD structure-based multiple sequence alignments generally scored higher than regions where gaps were not observed. Second, given the correct pairwise-aligned cores, the actual positions of gaps could be reproduced from sequence more accurately using the structurally-derived statistics than by using random pairwise alignments. Finally, revision of the Clustal-W residue-specific gap opening parameters with this new information improved the agreement of Clustal-W alignments with the structure-based alignments. At least three applications for these results are envisioned: improvement of gap penalties in pairwise (or multiple) sequence alignment, prediction of regions of single sequences likely (or unlikely) to contain indels, and more accurate placement of gaps in automated pairwise structure alignment.  相似文献   

12.
Kawabata T  Nishikawa K 《Proteins》2000,41(1):108-122
A number of automatic protein structure comparison methods have been proposed; however, their similarity score functions are often decided by the researchers' intuition and trial-and-error, and not by theoretical background. We propose a novel theory to evaluate protein structure similarity, which is based on the Markov transition model of evolution. Our similarity score between structures i and j is defined as log P(j --> i)/P(i), where P(j --> i) is the probability that structure j changes to structure i during the evolutionary process, and P(i) is the probability that structure i appears by chance. This is a reasonable definition of structure similarity, especially for finding evolutionarily related (homologous) similarity. The probability P(j --> i) is estimated by the Markov transition model, which is similar to the Dayhoff's substitution model between amino acids. To estimate the parameters of the model, homologous protein structure pairs are collected using sequence similarity, and the numbers of structure transitions within the pairs are counted. Next these numbers are transformed to a transition probability matrix of the Markov transition. Transition probabilities for longer time are obtained by multiplying the probability matrix by itself several times. In this study, we generated three types of structure similarity scores: an environment score, a residue-residue distance score, and a secondary structure elements (SSE) score. Using these scores, we developed the structure comparison program, Matras (MArkovian TRAnsition of protein Structure). It employs a hierarchical alignment algorithm, in which a rough alignment is first obtained by SSEs, and then is improved with more detailed functions. We attempted an all-versus-all comparison of the SCOP database, and evaluated its ability to recognize a superfamily relationship, which was manually assigned to be homologous in the SCOP database. A comparison with the FSSP database shows that our program can recognize more homologous similarity than FSSP. We also discuss the reliability of our method, by studying the disagreement between structural classifications by Matras and SCOP.  相似文献   

13.
Recent developments in the MAFFT multiple sequence alignment program   总被引:4,自引:0,他引:4  
The accuracy and scalability of multiple sequence alignment (MSA) of DNAs and proteins have long been and are still important issues in bioinformatics. To rapidly construct a reasonable MSA, we developed the initial version of the MAFFT program in 2002. MSA software is now facing greater challenges in both scalability and accuracy than those of 5 years ago. As increasing amounts of sequence data are being generated by large-scale sequencing projects, scalability is now critical in many situations. The requirement of accuracy has also entered a new stage since the discovery of functional noncoding RNAs (ncRNAs); the secondary structure should be considered for constructing a high-quality alignment of distantly related ncRNAs. To deal with these problems, in 2007, we updated MAFFT to Version 6 with two new techniques: the PartTree algorithm and the Four-way consistency objective function. The former improved the scalability of progressive alignment and the latter improved the accuracy of ncRNA alignment. We review these and other techniques that MAFFT uses and suggest possible future directions of MSA software as a basis of comparative analyses. MAFFT is available at http://align.bmr.kyushu-u.ac.jp/mafft/software/.  相似文献   

14.
MOTIVATION: Sequence alignment techniques have been developed into extremely powerful tools for identifying the folding families and function of proteins in newly sequenced genomes. For a sufficiently low sequence identity it is necessary to incorporate additional structural information to positively detect homologous proteins. We have carried out an extensive analysis of the effectiveness of incorporating secondary structure information directly into the alignments for fold recognition and identification of distant protein homologs. A secondary structure similarity matrix based on a database of three-dimensionally aligned proteins was first constructed. An iterative application of dynamic programming was used which incorporates linear combinations of amino acid and secondary structure sequence similarity scores. Initially, only primary sequence information is used. Subsequently contributions from secondary structure are phased in and new homologous proteins are positively identified if their scores are consistent with the predetermined error rate. RESULTS: We used the SCOP40 database, where only PDB sequences that have 40% homology or less are included, to calibrate homology detection by the combined amino acid and secondary structure sequence alignments. Combining predicted secondary structure with sequence information results in a 8-15% increase in homology detection within SCOP40 relative to the pairwise alignments using only amino acid sequence data at an error rate of 0.01 errors per query; a 35% increase is observed when the actual secondary structure sequences are used. Incorporating predicted secondary structure information in the analysis of six small genomes yields an improvement in the homology detection of approximately 20% over SSEARCH pairwise alignments, but no improvement in the total number of homologs detected over PSI-BLAST, at an error rate of 0.01 errors per query. However, because the pairwise alignments based on combinations of amino acid and secondary structure similarity are different from those produced by PSI-BLAST and the error rates can be calibrated, it is possible to combine the results of both searches. An additional 25% relative improvement in the number of genes identified at an error rate of 0.01 is observed when the data is pooled in this way. Similarly for the SCOP40 dataset, PSI-BLAST detected 15% of all possible homologs, whereas the pooled results increased the total number of homologs detected to 19%. These results are compared with recent reports of homology detection using sequence profiling methods. AVAILABILITY: Secondary structure alignment homepage at http://lutece.rutgers.edu/ssas CONTACT: anders@rutchem.rutgers.edu; ronlevy@lutece.rutgers.edu Supplementary Information: Genome sequence/structure alignment results at http://lutece.rutgers.edu/ss_fold_predictions.  相似文献   

15.
MOTIVATION: The performance and time complexity of an improved version of the segment-to-segment approach to multiple sequence alignment is discussed. In this approach, alignments are composed from gap-free segment pairs, and the score of an alignment is defined as the sum of so-called weights of these segment pairs. RESULTS: A modification of the weight function used in the original version of the alignment program DIALIGN has two important advantages: it can be applied to both globally and locally related sequence sets, and the running time of the program is considerably improved. The time complexity of the algorithm is discussed theoretically, and the program running time is reported for various test examples. AVAILABILITY: The program is available on-line at the Bielefeld University Bioinformatics Server (BiBiServ) http://bibiserv.TechFak.Uni-Bielefeld.DE/dial ign/  相似文献   

16.
The presentation by antigen-presenting cells of immunodominant peptide segments in association with major histocompatibility complex (MHC) encoded proteins is fundamental to the efficacy of a specific immune response. One approach used to identify immunodominant segments within proteins has involved the development of predictive algorithms which utilize amino acid sequence data to identify structural characteristics or motifs associated with in vivo antigenicity. The parallel-computing technique termed ‘neural networking’ has recently been shown to be remarkably efficient at addressing the problem of pattern recognition and can be applied to predict protein secondary structure attributes directly from amino acid sequence data. In order to examine the potential of a neural network to generalize peptide structural feature related to binding within class II MHC-encoded proteins, we have trained a neural network to determine whether or not any given amino acid of a protein is part of a peptide segment capable of binding to HLA-DR1. We report that a neural network trained on a data base consisting of peptide segments known to bind to HLA-DR1 is able to generalize features relating to HLA-DR1-binding capacity (r = 0.17 and p = 0.0001).  相似文献   

17.
We present a protein fold recognition method, MANIFOLD, which uses the similarity between target and template proteins in predicted secondary structure, sequence and enzyme code to predict the fold of the target protein. We developed a non-linear ranking scheme in order to combine the scores of the three different similarity measures used. For a difficult test set of proteins with very little sequence similarity, the program predicts the fold class correctly in 34% of cases. This is an over twofold increase in accuracy compared with sequence-based methods such as PSI-BLAST or GenTHREADER, which score 13-14% correct first hits for the same test set. The functional similarity term increases the prediction accuracy by up to 3% compared with using the combination of secondary structure similarity and PSI-BLAST alone. We argue that using functional and secondary structure information can increase the fold recognition beyond sequence similarity.  相似文献   

18.
目的:对frizzled6(FZ6)基因和Frizzled6(Fz6)蛋白进行生物信息学分析,更多的了解该基因的相关信息,为进一步研究Wnt-Fz信号通路以及FZ基因与神经管发育缺陷相关性研究提供基础。方法:运用Internet上的数据库及程序,对FZ6基因结构、单核苷酸多态性(single nucleotide polymorphisms,SNPs)位点、Fz6蛋白的二级结构、蛋白相互作用网络以及Fz蛋白家族的多重序列比对进行生物信息学分析。结果:FZ6基因染色体定位于8q22.3-q23.1,基因全长33995bp,编码706个氨基酸;编码区存在8个SNPs位点,其中错义SNPs4个;多序列比对结果显示10个Fz蛋白家族成员分为4个亚类,Fz3和Fz6为同一类;Fz6蛋白有2个保守的结构域,蛋白序列羧基端缺少其他Fz蛋白普遍存在的S/T-X-V序列模式;其二级结构以α螺旋和随机卷曲为主。结论:通过对FZ6基因及其蛋白的生物信息学分析获得了其相应的生物学特征,为进一步研究奠定基础。  相似文献   

19.
Neural network predicts sequence of TP53 gene based on DNA chip   总被引:2,自引:0,他引:2  
We have trained an artificial neural network to predict the sequence of the human TP53 tumor suppressor gene based on a p53 GeneChip. The trained neural network uses as input the fluorescence intensities of DNA hybridized to oligonucleotides on the surface of the chip and makes between zero and four errors in the predicted 1300 bp sequence when tested on wild-type TP53 sequence. AVAILABILITY: The trained neural network is available for academic use by contacting steen@cbs.dtu.dk  相似文献   

20.
Qiu J  Elber R 《Proteins》2006,62(4):881-891
In template-based modeling of protein structures, the generation of the alignment between the target and the template is a critical step that significantly affects the accuracy of the final model. This paper proposes an alignment algorithm SSALN that learns substitution matrices and position-specific gap penalties from a database of structurally aligned protein pairs. In addition to the amino acid sequence information, secondary structure and solvent accessibility information of a position are used to derive substitution scores and position-specific gap penalties. In a test set of CASP5 targets, SSALN outperforms sequence alignment methods such as a Smith-Waterman algorithm with BLOSUM50 and PSI_BLAST. SSALN also generates better alignments than PSI_BLAST in the CASP6 test set. LOOPP server prediction based on an SSALN alignment is ranked the best for target T0280_1 in CASP6. SSALN is also compared with several threading methods and sequence alignment methods on the ProSup benchmark. SSALN has the highest alignment accuracy among the methods compared. On the Fischer's benchmark, SSALN performs better than CLUSTALW and GenTHREADER, and generates more alignments with accuracy >50%, >60% or >70% than FUGUE, but fewer alignments with accuracy >80% than FUGUE. All the supplemental materials can be found at http://www.cs.cornell.edu/ approximately jianq/research.htm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号