首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The effect of neutral lipids, glycolipids and phospholipids associated with dog gastric mucus glycoprotein, and that of covalently bound fatty acids on the ability of glycoprotein to retard the diffusion of hydrogen ion was investigated. Purified mucus glycoprotein in its native form, placed between equimolar (0.155M) solutions of HCl and NaCl in a specially designed two-compartment chamber, caused a 90% reduction in permeability to hydrogen ion when compared with a layer of NaCl. Extraction of associated lipids lead to a 68% increase in permeability of the glycoprotein to hydrogen ion, while removal of the covalently bound fatty acids increased further the diffusion rate by 6%. Reassociation of the delipidated glycoprotein with its neutral lipids reduced the permeability to hydrogen ion by 34%, an 11% reduction was obtained with glycolipids, and 23% with phospholipids. Since neutral lipids account for 47% of the glycoprotein lipids, glycolipids 41.1% and phospholipids 11.9%, the quantitative decrease in permeability of the delipidated glycoprotein following its reassociation with phospholipids is 2.7 times greater than that of neutral lipids and 7.3 times greater than that of glycolipids.  相似文献   

2.
The undegraded high-molecular-weight glycoprotein of human gastric mucus has been isolated free of noncovalently bound proteins and lipids, as judged by gel filtration, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, cesium chloride density gradient centrifugation, and lipid analysis. Mild alkaline methanolysis of the thoroughly delipidated glycoprotein revealed that, on the average, the native undegraded glycoprotein contains 2.9 mol of acyl linked fatty acids/mg glycoprotein. The low-molecular-weight glycoprotein subunits, obtained after pepsin digestion, contain 2 nmol of acyl linked fatty acids/mg glycopeptide. The highest content of covalently bound fatty acids was found in the fraction of glycoprotein which remained undegraded after pepsin digestion. On the average, 10.2 mol of fatty acids/mg was substituted on this pepsin-resistant glycoprotein. After deacylation with hydroxylamine, the undegraded pepsin-resistant glycoprotein became susceptible to proteolytic cleavage. The obtained results suggest that fatty acids covalently bound to gastric mucus glycoprotein are involved in the regulation of proteolytic digestion of mucus glycoprotein in the stomach.  相似文献   

3.
Covalently bound fatty acids were found in strictly purified and delipidated gastric mucus glycoprotein of normal and cystic fibrosis individuals. The susceptibility of this linkage to methanolic KOH and hydroxylamine treatment indicated the ester bond between fatty acids and glycoprotein. On the average, 2.9 nmol fatty acid/mg glycoprotein were found in normal samples, and 12.2 nmol/mg glycoprotein in samples derived from cystic fibrosis. In normal gastric mucus glycoprotein the covalently linked fatty acids consisted of hexadecanoate (47.0%), octadecanoate (22.0%), tetracosanoate (5.9%), octadecenoate (14.5%) and tetracosenoate (6.0%). In cystic fibrosis mucus glycoprotein the covalently bound fatty acids were comprised mainly of hexadecanoate (36.5%), octadecanoate (48.7%) and octadecenoate (8.6%). These data indicate that cystic fibrosis gastric mucus glycoprotein is highly acylated and perhaps this is the major defect of glycoproteins in this disease.  相似文献   

4.
The involvement of salivary epidermal growth factor (EGF) in the maintenance of oral and gastric mucosal mucus coat dimension and chemical characteristics was investigated using sialoadenectomized rats. Examination of the oral and gastric mucosal surface by phase contrast microscopy and Alcian blue uptake revealed that deprivation of salivary EGF caused a 31-36% reduction in mucus coat thickness and a 38-43% reduction in adherent mucin content. Chemical analyses indicated that the mucus coat of sialoadenectomized group exhibited a 21-28% increase in protein and a 67% decrease in covalently bound fatty acids, a 30% decrease in carbohydrates, and a 32-37% decrease in lipids. Sialoadenectomy also evoked changes in the chemical composition of mucus glycoprotein component of oral and gastric mucus coat reflected in the lower content of sulfate (25-26%), associated lipids (24-25%), and covalently bound fatty acids (67-75%). Intragastric supplementation of EGF had no effect on the physicochemical changes caused by sialoadenectomy in the oral mucosal mucus coat, while nearly complete restoration to normal characteristics occurred in the gastric mucosal mucus coat. The results suggest that salivary EGF is essential for the maintenance of mucus coat dimension and quality needed in the protection of alimentary tract epithelium.  相似文献   

5.
The effect of prolonged administration of an antiulcer drug, sofalcone, on the physicochemical properties of gastric mucus was investigated. The experiments were conducted with groups of rats receiving twice daily for three consecutive days a dose of 100 mg/kg sofalcone, while the control group received daily doses of vehicle. The rats were sacrificed 16 h after the last dose and gastric mucosa subjected to physicochemical measurements. The results revealed that sofalcone evoked a 23% increase in mucus gel dimension, while sulfo- and sialomucins content of the gel increased by 54 and 25%, respectively. These changes were accompanied by a 16% increase in mucus H+ retardation capacity, 2-fold increase in viscosity, and a 39% increase in the gel hydrophobicity. The mucus elaborated in the presence of sofalcone contained 67% more covalently bound fatty acids, exhibited 10% lower content of protein, 30% higher content of carbohydrate, and 18% higher content of lipids. The mucus of the sofalcone group also showed an increase in the proportion of the high molecular weight mucus glycoprotein form, which in the control group accounted for about 30% of gel mucin, while its content in mucus gel of animals receiving sofalcone reached the value of 50%. The results indicate that sofalcone enhances the protective qualities of mucus component of gastric mucosal barrier.  相似文献   

6.
The hydrophobic properties of gastric mucus glycoprotein were investigated using the fluorescent probe, bis(8-anilino-1-naphthalenesulfonate). The glycoprotein was subjected to removal of associated and covalently bound lipids, peptic degradation, and disulfide bridge reduction. Fluorescence titration data revealed the presence of 55 hydrophobic binding sites in the intact mucin molecule, 71 binding sites in the glycoprotein devoid of associated lipids, and 53 binding sites in the glycoprotein devoid of associated lipids and covalently bound fatty acids. Proteolytic digestion of the glycoprotein with pepsin essentially abolished the probe binding, while reduction of disulfide bridges resulted in glycoprotein subunits whose combined number of binding sites was about 3 times greater than that of the mucin polymer. The binding of the probe to mucus glycoprotein varied with the pH of the medium, being highest at pH 2.0 and lowest at pH 9.0. The results indicate that lipids contribute to the hydrophobic character of gastric mucin and that hydrophobic binding sites reside on the nonglycosylated regions of the glycoprotein polymer buried within its core.  相似文献   

7.
The hydrophobic properties of salivary mucus glycoprotein were investigated by fluorescence spectroscopy using bis(8-anilino-1-naphthalene-sulfonate). The mucin, purified from rat submandibular salivary gland, was subjected to removal of associated and covalently bound lipids, degradation with pronase, and reduction with beta-mercaptoethanol, and titrated with the probe. Analyses of fluorescence data revealed the presence of 49 +/- 5 hydrophobic binding sites in the intact mucin molecule, a 69% increase in the number of binding sites occurred following extraction of associated lipids, while the removal of covalently bound fatty acids caused a 25% decrease in the binding sites. Proteolytic destruction of the nonglycosylated regions of the glycoprotein essentially abolished the probe binding, whereas reduction produced glycoprotein subunits whose combined number of hydrophobic binding sites was 2.4 times greater than that of mucus glycoprotein polymer. The results suggest that associated and covalently bound lipids contribute to hydrophobic characteristics of salivary mucin and that the hydrophobic binding sites reside on the nonglycosylated regions of this glycoprotein buried within its core.  相似文献   

8.
The presence of noncovalently associated lipids and covalently bound fatty acids was investigated in preparations of mucus glycoproteins obtained by using density-gradient centrifugation in CsCl/guanidinium chloride. No phospholipids, glycolipids, cholesterol, or triglycerides could be detected. However, small amounts of extractable fatty acids were consistently found, the sum of which ranged from 0.3 to 0.9 micrograms/mg of glycoprotein. The amount of fatty acid released after subsequent treatment with KOH ranged from 0 to 27 ng/mg of glycoprotein. We conclude that density-gradient centrifugation in CsCl/guanidinium chloride is very efficient in removing noncovalently associated lipids from mucus glycoproteins and that covalently bound fatty acids are probably not present in the macromolecules.  相似文献   

9.
In vitro acylation of rat gastric mucus glycoprotein with [3H]palmitic acid   总被引:3,自引:0,他引:3  
The incorporation of fatty acids into gastric mucus glycoproteins was studied by incubating rat gastric mucosal cell suspensions with [9,10-3H]palmitic acid and [3H]proline. The mucus glycoprotein polymer, secreted into the growth medium (extracellular) and that contained within the cells (intracellular), was purified from the other components of the secretion, thoroughly delipidated, and then analyzed for the radiolabeled tracers. Both pools of mucus glycoprotein, incubated in the presence of [3H]palmitic acid, contained radioactive label which could not be removed by gel filtration, CsCl density gradient centrifugation, sodium dodecyl sulfate-gel electrophoresis, or lipid extraction. Treatment of the purified mucus glycoprotein with 1 M hydroxylamine or 0.3 M methanolic KOH released the radioactivity, thus indicating that [3H]palmitic acid was covalently bound by ester linkage to the glycoprotein. The released radioactivity was associated mainly (87%) with palmitic acid. The incorporation ratio of [3H]proline to [3H]palmitic acid was 0.12:1.0 in the extracellular glycoprotein and 1.38:1.0 in the intracellular glycoprotein, which suggested that acylation of mucus glycoprotein occurs in the intracellular compartment after completion of its polypeptide core. The fact that incorporation of [3H]palmitic acid was greater in the glycoprotein subunits than in the glycoprotein polymer indicates that acylation takes place near the end of subunit processing but before their assembly into the high molecular weight mucus glycoprotein polymer.  相似文献   

10.
The resistance to proteolysis by pepsin of gastric mucus glycoprotein synthesized by tissue culture in the presence and absence of 0.1 M ethanol was investigated. The glycoprotein product of ethanol-supplemented culture was found to contain 68% less associated lipids and 81% less covalently bound fatty acids, but exhibited unaltered content of carbohydrate and protein. The lipid and fatty acyl deficient glycoprotein was 5-times more rapidly and 2-3-times more extensively degraded by pepsin than the glycoprotein synthesized in the absence of ethanol. Following delipidation with organic solvents and deacylation with hydroxylamine both glycoproteins were digested at the same rate and degraded to the same extent. The lower content of fatty acyl residues markedly affected the overall pattern of the proteolytic fragments identified by SDS gel electrophoresis. The peptides corresponding to the acylated fragments of control were degraded and an increase in the amount of smaller peptides was observed. The in vitro assays of the fatty acyltransferase activity towards the substrates obtained from control and alcohol-containing cultures revealed that the enzyme activity was similar and increased proportionally with increased concentration of both glycoprotein substrates and enzyme. However, addition of 0.1 M ethanol to the assay tubes containing complete incubation mixture decreased the acylation of either glycoprotein by 40%. Based on the results presented here, and on previous studies of mucus glycoprotein synthesis in the presence of ethanol, we conclude that ethanol interferes with the process of acylation of mucus glycoprotein with fatty acids.  相似文献   

11.
The effect of ethanol on the synthesis and secretion of mucus glycoprotein in gastric mucosal cells was investigated. The mucosal cell suspensions were subjected to a short-term (4 h) culture in the presence of 0-1.5 M ethanol, with [3H]proline and [3H]palmitic acid as markers for glycoprotein synthesis and acylation. The synthesized labeled mucus glycoprotein was isolated from the incubation medium (extracellular glycoprotein) and from the mucosal cells (intracellular glycoprotein), and analyzed. Depending upon the ethanol concentration in the cell culture medium, two distinct effects on the synthesis and secretion of mucus glycoprotein were observed. The cells cultured in the presence of 0.02-0.1 M ethanol showed increased ability for the incorporation of [3H]proline and [3H]palmitic acid, and for the secretion of the newly assembled mucus glycoprotein. The synthesis of the glycoprotein increased 18-fold, acylation 5-fold, and secretion 10-fold. The synthesized glycoprotein, however, contained four to five times less of acyl-bound fatty acids. Ethanol at 0.1-1.5 M caused a marked reduction (62-64%) in the mucus glycoprotein synthesis, but the amount of glycoprotein released to the medium remained constant. This indicated that higher concentrations of ethanol caused the release of the preformed intracellular mucus glycoprotein reserves. The results demonstrate that gastric mucosal cells incubated in the presence of ethanol exhibit impaired synthesis and secretion of mucus glycoprotein, and that the severity of impairment depends upon the ethanol concentration.  相似文献   

12.
The effect of an antiulcer drug (sucralfate) on the viscosity and the ability of pig gastric mucus glycoprotein to retard the diffusion of hydrogen ions was investigated. Preincubation with sucralfate produced a marked enhancement in the glycoprotein viscosity. This enhancement was concentration-dependent and at 1.0 X 10(-3) M sucralfate a 60% increase in viscosity was attained. Permeability measurements revealed that sucralfate caused a substantial improvement in the ability of the glycoprotein to retard the diffusion of hydrogen ions. At 1.0 X 10(-3) M sucralfate, permeability decreased by 25% and a 43% reduction was obtained with 1.0 X 10(-3) M sucralfate. It is suggested that sucralfate, by increasing the viscosity of the glycoprotein and by improving its ability to retard the diffusion of hydrogen ions, strengthens the integrity of gastric mucus.  相似文献   

13.
The effect of 16,16-dimethyl prostaglandin E2 (DMPGE2) on gastric mucus glycoprotein viscosity, permeability to hydrogen ion and degradation by pepsin was investigated. Preincubation with DMPGE2 produced a marked enhancement in the glycoprotein viscosity. The increase was concentration dependent and at 2.6 X 10(-5)M DMPGE2 reached a value of 178%. Permeability measurements revealed that 2.6 X 10(-7)M DMPGE2 increased the retardation ability of the glycoprotein to hydrogen ion by 10%, while 22% increase was obtained with 2.6 X 10(-4)M DMPGE2. The results of peptic activity assay showed that DMPGE2 had no inhibitory effect on the rate of glycoprotein proteolysis, and actually a small stimulatory influence was consistently observed. The results suggest that prostaglandins beneficially affect the physical properties of mucus glycoprotein which are considered to be essential for the protective function of gastric mucus.  相似文献   

14.
  • 1.1. The fatty acylation of mucus glycoprotein nascent peptides was investigated using [3H]palmitic acid and [35S]methionine-labeled peptidyl-tRNA of rat gastric mucous cells.
  • 2.2. The mucus glycoprotein peptidyl-tRNA fraction was found to contain covalently bound palmitic acid in its complexes.
  • 3.3. RNase digestion of the mucus glycoprotein peptidyl-tRNA released [3H]palmitic acid labeled peptides which, on SDS-polyacrylamide gel, separated into a multitude of bands ranging in size from 2000 to 60,000 Da.
  • 4.4. The analyses of low molecular weight peptides revealed that palmitic acid was present in methionine-labeled peptides containing 30–43 amino acids and those of 18–25 amino acids or larger devoid of methionine, but was not identified in methionine-labeled peptides containing 10–15 amino acids.
  • 5.5. The results indicate that the N-terminal fatty acylation of mucus glycoprotein nascent peptides is a cotranslational process which is occuring in an immediate vicinity of the signal peptide fragment.
  相似文献   

15.
Interphotoreceptor retinoid-binding protein (IRBP) purified from monkey interphotoreceptor matrix contains relatively high concentrations of endogenous fatty acids, 6.51 mol/mol of protein. Sixty-five percent of the total fatty acid bound to IRBP was found to be noncovalently attached, with the remainder covalently bound. The fatty acids are not residual components of phospholipids or neutral lipids, as judged by microchemical methods. The major fatty acids bound to IRBP are: palmitic (35%), stearic (21%), palmitoleic (7%), oleic (29%), linoleic (6%) and docosahexaenoic acids (2%). These fatty acids account for about 90% of the total fatty acid bound to interphotoreceptor matrix proteins extracted with organic solvents. Thus, IRBP may function as an intercellular fatty acid carrier and may depend on the covalently bound fatty acids for anchoring in the outer leaflet of cell membranes.  相似文献   

16.
Myristic, palmitic, stearic, oleic and linoleic acids have been identified as the covalently bound fatty acids in the monkey gastrointestinal mucosal membrane proteins and among them palmitolation was predominant. Distribution studies in various regions of the gastrointestinal mucosa showed no significant difference in the content and composition of covalently bound fatty acids in these membrane and most of the fatty acids were found to be ester linked. Total membranes from isolated crypt and villus enterocytes and colonocytes had similar composition of these fatty acids. Covalently bound fatty acid levels were higher in the small intestinal brush border membrane. As suggested for the mucus glycoproteins, covalently bound fatty acids in the intestinal epithelial cell membrane may protect these membranes from proteolytic damage from the luminal proteases.  相似文献   

17.
A fatty acyltransferase activity which catalyzes the transfer of palmitic acid from palmitoyl coenzyme A to gastric mucus glycoprotein has been demonstrated in the rat gastric mucosa. Subcellular fractionation studies revealed that the enzyme activity was present in a Golgi-rich membrane fraction. Optimum enzymatic activity for acylation of mucus glycoprotein was obtained with 0.5% Triton X-100, 25 mM NaF, and 2 mM dithiothreitol at a pH of 7.4. The enzymatic activity increased proportionally, over a given range, with increased concentrations of both substrates and of enzyme. The apparent Km of the enzymes for the undegraded mucus glycoprotein was 4.5 X 10(-7) M and for palmitoyl-CoA, 3.8 X 10(-5) M. The 14C-labeled product of the reaction cochromatographed on Bio-Gel A-50 column and migrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with gastric mucus glycoprotein. Treatment of this 14C-labeled glycoprotein with mild alkali released hexane-extractable product which was identified as [14C]palmitate. The enzyme was also capable of fatty acylation of the deglycosylated glycoprotein, but did not catalyze the transfer of palmitic acid to the proteolytically degraded mucus glycoprotein. This indicates that the acceptor site for fatty acyltransferase is situated in the protease-susceptible nonglycosylated region of the mucus glycoprotein polymer.  相似文献   

18.
To investigate whether the antigenicity of purified human intestinal mucin was dependent on the presence of associated lipid, native mucin (purified by equilibrium density gradient centrifugation in CsCl (twice) and gel filtration on Sepharose 2B) was extracted five times with organic solvents to remove any noncovalently bound lipid and, subsequently, treated with hydroxylamine to release any covalently bound fatty acids. The first organic extract contained cholesterol, phosphatidylethanolamine, and phosphatidylserine, with lesser amounts of phosphatidylcholine, triglycerides, fatty acids, sphingomyelin, and glycolipids. In total, this noncovalently bound lipid amounted to less than 5% by weight of the native mucin preparation. Further organic extracts were free of lipid. Removal of noncovalently bound lipid had essentially no effect on mucin antigenicity, as assessed by radioimmunoassay. Treatment of the delipidated mucin with hydroxylamine caused no detectable changes in mucin antigenicity or composition and the release of covalently (ester) bound fatty acids could not be demonstrated. We therefore conclude that although purified human intestinal mucin contains small amounts of noncovalently bound lipid this lipid is not involved in mucin antigenicity.  相似文献   

19.
Using gastric mucous cells which are involved exclusively in the synthesis of secretory O-glycosidic glycoprotein (mucin), the relationship between protein core synthesis and its acylation with fatty acids was investigated. Labeling of the cells with [3H]palmitic acid and [35S]methionine followed by isolation of peptidyl-tRNA and release of nascent peptides, indicated that these peptides contain covalently bound fatty acids. The high performance thin layer chromatography, SDS-gel electrophoresis, and radioactivity scanning revealed that the preparation contained three fractions labeled with palmitate (Mr 15,000-3,600) and two (Mr 1,500 and less) without this label. Based on these data and the nascent peptides amino acid analysis, we conclude that the protein core of the O-glycosidic glycoprotein is acylated with fatty acids during translation, when the peptide chain is longer than 21 amino acid residues.  相似文献   

20.
The enzyme activity that catalyzes the transfer of palmitic acid from palmitoyl coenzyme A to the deacylated intact or deglycosylated gastric mucus glycoprotein was demonstrated in the detergent extracts of the microsomal fraction of antral and body mucosa of the rat stomach. Both types of mucosa exhibited similar acyltransferase activities and acceptor specificities. A 10-14% decrease in the fatty acyltransferase activity was observed with the reduced and S-carboxymethylated mucus glycoprotein, but the proteolytically degraded glycoprotein showed no acceptor capacity. This indicated that the acylation of mucus glycoprotein with fatty acids occurs at its nonglycosylated polypeptide regions and that some of the fatty acids may be linked via thiol esters. Optimum enzyme activity was obtained at pH 7.4 with the detergent Triton X-100, NaF, and dithiothreitol. The apparent Km values for the intact and deglycosylated mucus glycoproteins were 0.45 and 0.89 microM, respectively. The acyltransferase activity of the microsomal enzyme was inhibited by ethanol. With both intact and deglycosylated glycoprotein substrates, the rate of inhibition was proportional to the ethanol concentration up to 0.4 M and was of the competitive type. The K1 values were 0.80 microM for the intact mucus glycoprotein and 1.82 microM for the deglycosylated glycoprotein. Preincubation of the microsomal enzyme with low concentrations of ethanol (up to 0.5 M) did not seem to exert any additional deterrent effect on acyltransferase activity. Higher concentrations of ethanol (1.0 M and above), however, caused substantial reduction in the transferase activity due to denaturation of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号