首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 967 毫秒
1.
A 2-year field trial was conducted to study the effects of seed treatment (500 ppm) or foliar application of 1000 ppm thiourea (at 25 and 40 days after sowing) or a combination of these, on growth, yield, net photosynthesis and nitrogen metabolism of clusterbean (Cyamopsis tetragonoloba (L.) Taub.) grown for two consecutive years (1999 and 2000) under rainfed conditions of the Indian arid zone. Thiourea application either as pre-sowing seed treatment or as foliar spray significantly increased plant height, leaf area, dry matter production and seed yield as compared to the untreated control plants during both the years. However, maximum favourable effects were obtained with combined application of seed treatment and foliar spray. The beneficial effects of thiourea were attributed to its role in significantly increasing the net photosynthetic rates and the concentrations of total chlorophyll and starch in the leaves. Thiourea also reflected a positive role in enhancing nitrogen metabolism as it significantly increased nitrate reductase activity and concentration of soluble protein in the treated plants. It has been concluded that seed treatment with thiourea followed by foliar spray could significantly improve growth, yield and water use efficiency of rainfed clusterbean under arid conditions due to enhanced photosynthesis and more efficient nitrogen metabolism.  相似文献   

2.
Low temperature at stand establishment and high temperature at reproductive stage are involved in reduction of grain yield of spring maize. A field study was therefore conducted to evaluate different physiological strategies for improving performance of spring maize under temperature extremes. Seed priming and foliar spray with 3% moringa leaf extract (MLE) and 100 mg L-1 kinetin solution alone or in all possible combinations with each other at three growth stages (knee height, tasseling and grain filling stage) and hydropriming was compared with control. Seed priming plus foliar spray of MLE and kinetin significantly improved stand establishment especially under early sown crop as indicated by reduced mean emergence time (MET), improved emergence index (EI) and final emergence percentage (FEP). Similarly increased chlorophyll contents, crop growth rate, leaf area index, photosynthetic rate, transpiration rate, relative water content and decreased membrane permeability were recorded in both early and optimum sowing conditions in MLE priming plus foliar spray treatment. All these improvements were harvested in the form of increased yield and harvest index compared with control treatment. Overall crop sown at optimum time performed best but exogenous application of MLE through seed priming and foliar spray maximally improved the performance of early sown maize crop which is attributed more likely due to improved stand establishment, chlorophyll and phenolic contents, increased leaf area duration and grain filling period. It can be concluded that seed priming with MLE along with its foliar spray could increase production of maize under temperature extremes.  相似文献   

3.
An experiment was conducted to find out the efficacy of putrescine and benzyladenine on photosynthesis and productivity in wheat. Seeds of wheat genotype HD 2329 (widely adapted under irrigated condition) were grown in ceramic pots under standard package and practices. Putrescine (0.1 mM) and benzyladenine (0.05 mM) were sprayed on the aerial portion of these plants at the time of anthesis. After spray, half of the plants were subjected to water stress by withholding irrigation. The non stressed plants were irrigated to keep the soil humidity at field capacity. Results showed that drought stress severly reduced the photosynthetic attributes, water status and chlorophyll content which were significantly improved by foliar application of putrescine/benzyladenine. The levels of free proline, amino acids and soluble sugars were higher under water stress conditions which were enhanced further by putrescine/benzyladenine. Memrane injury was also reduced by both the chemicals. Yield and yield attributes reduced under water stress conditions, but putrescine and benzyladenine treated plants exhibited significantly higher values over control. Most of these parameters were found significantly correlated with grain yield. It is suggested that both benyzladenine and putrescine were able to impart drought tolerance in wheat but the response of putrescine was more promising owing to better management of various physio-biochemical processes, particularly under water stress conditions.  相似文献   

4.
5.
Improving physio-biochemical traits in wheat under drought stress conditions has received more research attention in recent years for better adaptability and higher yield. In this study, we explored the potential bio-physiological mechanisms underlying improved plant growth and water use efficiency in wheat following soil application of potassium (0 and 100 kg ha?1) and seed primed salicylic acid (SA) (150 mg per L) and SA foliar application (100 mg per L) under drought stresses (100%, 60% and 30% FC). Two years' average data revealed that inducing drought stress resulted in a decrease in plant pigments content, growth traits, and plant water status however, the influence was substantially reduced with the combined application of K and SA under drought stress conditions. The SA foliar spray in combination with K had increased chlorophyll a (174% and 83%), chl b (130% and 192%), chl a + b (156% and 120), carotenoid (22% and 11%), proline contents (24% and 29%) leaf relative water content (24% and 29%) while reduced leaf WSD (17% and 20%), WRC (6% and 7%), and WUC (23% and 28%) under mild and severe drought stresses, respectively. The increase in grain yield by 41% and 37% with enhanced water use efficiency was obtained with combined foliar SA and K under mild and severe drought stress, respectively indicating its vital role in overcoming the deleterious effects of drought via regulation of osmotic and metabolic processes and stabilizes cell components. RDA analysis revealed that the studied traits were completely discriminated under severe stress than mild or no drought stress. A positive and significant association was found between plant pigments with seed yield whereas a negative and significant correlation existed between water leaf traits and plant pigments. It was concluded that both foliar SA and seed primed SA with K fertilization combat the adverse effects of drought and improved plant water status as well as growth and bio-physiological traits of wheat under drought stress conditions.  相似文献   

6.
Polyamines (PAs) are positively charged molecules known to mitigate drought stress; however, little is known about their mechanism of alleviating drought stress. We investigated the effects of PAs exogenously applied as a seed primer and as a foliar spray on the growth, membrane stability (MS), electrolyte leakage (EL), Na+ and K+ cations, reactive oxygen species (ROS), catalase (CAT; EC 1.11.1.6) and guaiacol peroxidase (GPX; EC 1.11.1.7) activity and chloroplast ultra-structure in wheat (Triticum aestivum L.; cv. Sakha-94) under drought stress. Three PA solutions, namely, putrescine, spermine and a mixture of the two (Mix), were each applied at a concentration of 100 µM. Our study demonstrated that the retardation of chlorophyll loss and elevation of Rubisco levels were involved in PA-enhanced growth under drought stress. These relationships were mainly reflected in elevated fresh weight and dry weight in response to foliar spraying with all PA solutions and seed priming with the Mix solution. The elevated growth seemed to be due to increased photosynthetic pigments, protein and Rubisco. In contrast, drought decreased growth, photosynthetic pigments, protein and Rubisco. MS was enhanced by PAs applied as a seed primer or foliar spray, as shown by clear reductions in EL %, malondialdehyde (MDA) content and the Na+/K+ ratio as well as reduced ROS markers and elevated CAT (but not GPX) activity. Further study showed that the Mix solution of PAs, applied either during seed priming or as a foliar spray, improved chloroplast ultra-structure, suggesting that improvements in Rubisco and photosynthetic pigments were involved in PA maintenance of chloroplast stability. Therefore, the present study showed that elevated CAT activity is the main mechanism through which PAs reduce ROS and MDA, thereby improving MS and protecting mesophyll cells structurally and functionally under drought stress in wheat.  相似文献   

7.
Brassinolide (BR) is a relatively new plant growth regulator. To test whether BR could be used to increase tolerance to water deficits in soybean, the effects of BR application on photosynthesis, assimilate distribution, antioxidant enzymes and seed yield were studied. BR at 0.1 mg l−1 was foliar applied at the beginning of bloom. Two levels of soil moisture (80% field capacity for well-watered control and 35% for drought-stressed treatment) were applied at pod initiation. BR treatment increased biomass accumulation and seed yield for both treatments. Drought stress inhibited translocation of assimilated 14C from the labeled leaf, but BR increased the translocation for both treatments. Drought stress depressed chlorophyll content and assimilation rate (A), while chlorophyll content and A of BR-treated plants were greater than that of drought-stressed plants. BR treatment increased maximum quantum yield of PS II, the activity of ribulose-1,5-bisphosphate carboxylase, and the leaf water potential of drought-stressed plants. Treatment with BR also increased the concentration of soluble sugars and proline, and the activities of peroxidase and superoxide dismutase of soybean leaves when drought-stressed. However, it decreased the malondialdehyde concentration and electrical conductivity of leaves under drought stress. This study show that BR can be used as a plant growth regulator to enhance drought tolerance and minimize the yield loss of soybean caused by water deficits.  相似文献   

8.
Drought stress hampers rice performance principally by disrupting the plant–water relations and structure of biological membranes. This study appraised the role of polyamines (PAs) in improving drought tolerance in fine grain aromatic rice (Oryza sativa L.). Three PAs [putrescine (Put), spermidine (Spd) and spermine (Spm)] were used each at 10 μM as seed priming (by soaking seeds in solution) and foliar spray. Primed and non-primed seeds were sown in plastic pots with normal irrigation in a phytotron. At four-leaf stage, plants were subjected to drought stress by bringing the soil moisture down to 50% of field capacity by halting water supply. For foliar application, 10 μM solutions each of Put, Spd and Spm were sprayed at five-leaf stage. Results revealed that drought stress severely reduced the rice fresh and dry weights, while PAs application improved net photosynthesis, water use efficiency, leaf water status, production of free proline, anthocyanins and soluble phenolics and improved membrane properties. PAs improved drought tolerance in terms of dry matter yield and net photosynthesis was associated with the maintenance of leaf water status and improved water use efficiency. Among the antioxidants, catalase activity was negatively related to H2O2 and membrane permeability, which indicated alleviation of oxidative damage on cellular membranes by PAs application. Foliar application was more effective than the seed priming, and among the PAs, Spm was the most effective in improving drought tolerance.  相似文献   

9.
The role of plant antioxidant system in water stress tolerance was studied in three contrasting wheat genotypes. Water stress imposed at different stages after anthesis resulted in a general increase in lipid peroxidation (LPO) and decrease in membrane stability index (MSI), and contents of chlorophylls (Chl) and carotenoids (Car). Antioxidant enzymes like glutathione reductase and ascorbate peroxidase significantly increased under water stress. Genotype C 306, which had highest glutathione reductase and ascorbate peroxidase activity, also showed lowest LPO and highest MSI, and Chl and Car contents under water stress in comparison to susceptible genotype HD 2329, which showed lowest antioxidant enzyme activity as well as MSI, Chl and Car contents and highest LPO. HD 2285 which is tolerant to high temperature during grain filling period showed intermediate behaviour. Thus, the relative tolerance of a genotype to water stress as reflected by its comparatively lower LPO and higher MSI, Chl and Car contents is closely associated with its antioxidant enzyme system. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
An experiment was conducted with three wheat (Triticum aestivum L.) genotypes C 306, HD 2285 and HD 2329 (differently susceptible to water and temperature stress) to study the extent of oxidative injury and activities of antioxidant enzymes in relation to heat stress induced by manipulating dates of sowing. Increase in temperature by late sowing significantly decreased leaf relative water content (RWC), ascorbic acid content, and increased H2O2 content and lipid peroxidation in all the genotypes at 8 and 23 d after anthesis. Temperature tolerant genotypes C 306, closely followed by HD 2285 were superior to HD 2329 in maintaining high RWC, ascorbic acid content, and lower H2O2 content and lipid peroxidation (malondialdehyde content) under high temperature (late sowing) at the two stages. Activities of superoxide dismutase and catalase were highest in HD 2285 followed by C 306 and minimum in HD 2329 while ascorbate peroxidase activity was highest in C 306.  相似文献   

11.
Water stress effects on accumulation of dry matter, carbon andnitrogen in grains were analysed in varieties and species ofwheat differing in yield stability. Variable water environmentswere generated using a line source sprinkler system. Althoughlarge fluctuations occurred in the water potentials of the flagleaf and ear, grain growth remained relatively buffered undermoisture stress. Developing grains were at a lower moisturelevel throughout grain growth in plants subjected to moisturestress relative to the unstressed plants. Carbon content decreasedmore than the nitrogen content in the stressed grains of thespecies and varieties. Reduction in the duration of grain growthand the rate of dry weight accumulation induced by water stresswas more prominent in T. aestivum var. C306 and T. sphaerococcum.Grain yield was reduced significantly under water stress, themaximum being in the high yielding cultivar HD2329. Both grainnumber and grain weight were reduced in response to stress,the extent of reduction being different in different genotypes.Copyright1994, 1999 Academic Press Water deficit, yield stability, C and N accumulation, heat degree days  相似文献   

12.
Role of Antioxidant Systems in Wheat Genotypes Tolerance to Water Stress   总被引:12,自引:0,他引:12  
The role of plant antioxidant systems in stress tolerance was studied in leaves of three contrasting wheat genotypes. Drought imposed at two different stages after anthesis resulted in an increase in H2O2 accumulation and lipid peroxidation and decrease in ascorbic acid content. Antioxidant enzymes like superoxide dismutase, ascorbate peroxidase and catalase significantly increased under water stress. Drought tolerant genotype C 306 which had highest ascorbate peroxidase and catalase activity and ascorbic acid content also showed lowest H2O2 accumulation and lipid peroxidation (malondialdehyde content) under water stress in comparison to susceptible genotype HD 2329 which showed lowest antioxidant enzyme activity and ascorbic acid content and highest H2O2 content and lipid peroxidation. HD 2285 which is tolerant to high temperature during grain filling period showed intermediate behaviour. Superoxide dismutase activity, however, did not show significant differences among the genotypes under irrigated as well as water stress condition. It seems that H2O2 scavenging systems as represented by ascorbate peroxidase and catalase are more important in imparting tolerance against drought induced oxidative stress than superoxide dismutase alone. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Park wheat (Triticum aestivum cv. Park) is susceptible to stem melanosis when grown on Cu-deficient soils. Three field experiments were conducted to evaluate the effectiveness of various Cu sources, using different methods and rates of application for reducing the incidence of stem melanosis and increasing the grain yield of Park wheat on a Cu-deficient Black Chernozemic soil in central Alberta. A fourth experiment determined the residual effect of Cu over 4 years. In the first experiment, Park wheat had less disease and higher grain yield when Cu-chelate solution at 2 and 4 kg Cu ha−1 or Cu-sulfate solution at 10 and 20 kg Cu ha−1 was applied to the soil surface and incorporated to a depth of 8 cm or was applied at these rates as a foliar spray. The foliar application, however, was phytotoxic and delayed maturity by approximately two weeks. Sidebanding Cu (4 cm to the side and 4 cm below the seed row) was least effective. In the second experiment, Cu-sulfate solution incorporated into the soil was more effective than the soil incorporated granular Cu-sulfate in reducing disease incidence and increasing grain yield in the year of application. In the following year the granular Cu was as effective as solution Cu. The third experiment showed that Cu seed dressings did not have any effect on disease incidence or grain yield of Park wheat. In the fourth experiment, the residual effect of Cu-chelate was evident four years after application. The grain yield in the fourth year was about four times that of the control. Contribution No. 564  相似文献   

14.
Salicylic acid (SA) is a common plant-produced signal molecule that is responsible for inducing tolerance to a number of biotic and abiotic stresses. An experiment was, therefore, conducted to test whether acetyl salicylic acid (ASA) application at various concentrations through seed soaking or foliar spray would protect muskmelon [Cucumis melo L. (reticulatus group)] seedlings, subjected to drought stress. Twenty-three-day-old plants pre-treated with ASA (0, 0.1, 0.25, 0.50 or 1.0 mM) were subjected to drought stress for 1 week in a greenhouse. ASA applied either through seed soaking or through foliar spray was effective within the range of 0.1–1 mM in providing drought stress protection in muskmelon seedlings; however, there was no difference between application methods indicating that both methods provided similar levels of protection. ASA significantly affected all seedling growth and stress indicator variables measured except leaf number and root dry weight. The best protection appeared to be obtained from seedlings pre-treated with lower concentrations of ASA. Even though both methods provided similar means of protection, due to its simplicity and practicality, soaking muskmelon seeds prior to sowing in up to 0.5 mM ASA would be a more desirable method.  相似文献   

15.
Singh H  Sharma SN  Sain RS 《Hereditas》2004,141(2):106-114
A set of diallel crosses involving 10 parents was made to have information on the extent of heterosis over mid-parent and better parent and inbreeding depression for yield and yield contributing characters under three different environments. Marked heterobeltiosis for grain yield and its important components were observed. For grain yield, 83 crosses showed significant positive heterobeltiosis in all the three sowing dates, however, twenty crosses showed significant consistent heterobeltiosis for grain yield per plant over all the three environments. The maximum heterobeltiosis for grain yield per plant observed was 50.94% (Raj 3765 x HD 2285), 121.08% (PBW 373 x HD 2329) and 93.96% (PBW 373 x HD 2329) under early, normal and late sowing conditions, respectively. Cross PBW 373 x HD 2329 in both early and normal plantings and cross Raj 3765 x HD 2285 under late planting were observed most heterotic for grain yield. The crosses showing heterosis for grain yield were not heterotic for all the characters. Heterosis for grain yield per spike followed by tillers per plant and 1000-grain weight was independently associated with heterosis for grain yield in early and normal plantings. However, heterosis for grain yield per spike, dwarf plant height and tillers per plant contributed maximum towards yield heterosis. Significant inbreeding depression was recorded frequently for yield and yield contributing traits, however, in a few traits it was observed significant negative indicated that F(2) was superior to F(1) considered desirable combination for trait(s). The study reveals good scope for commercial exploitation of heterosis as well as isolation of pure lines among the progenies of heterotic F(1) for improvement of yield levels in bread wheat.  相似文献   

16.
The relative binding of seed water and seed coat membrane stability were measured in two contrasting wheat (Triticum aestivum L) varieties, HDR 77 (drought-tolerant) and HD 2009 (susceptible) using seed water sorption isotherms, electrical conductivity (EC) of leachates and desorption-absorption isotherms. Analysis of sorption isotherm at 25 degrees C showed that the seeds of HDR 77 had significantly higher number of strong binding sites, with correspondingly greater amount of seed water as strongly bound water, as compared to HD 2009. Total number of binding sites was also higher in HDR 77 than HD 2009, which explained the better desiccation tolerance and higher capacity to bind water in seeds of HDR 77. EC of seed leachate in both varieties did not change with respect to change in equilibrium relative humidity (RII), indicating the general seed coat membrane stability of wheat seeds. However, absolute conductivity values were higher for HD 2009. showing its relatively porous seed coat membrane. Significantly lower area enclosed by the desorption-absorption isotherm loop in HDR 77, as compared to HD 2009 also indicated the greater membrane integrity of HDR 77. Germination and seedling vigour of HD 2009 were reduced when equilibrated over very low and very high RH. In contrast, germination and vigour in HDR 77 were maintained high, except at very high RH, indicating again its desiccation tolerance. Thus, the study demonstrated the relative drought tolerance of HDR 77, on the basis of seed water-binding characteristics and seed membrane stability. Seed membrane stability as measured by seed leachate conductivity or as area under dehydration-rehydration loop may be used as a preliminary screening test for drought tolerance in wheat.  相似文献   

17.
Summary Soil + charcoal (1∶3) carrier based and liquid cultures of Rhizobia were used to inoculate wheat seed cv. HD2329. The plants received 100 kg N in two equal splits and 60 kg P2O5 and 40 kg K20 ha−1. Inoculation with rhizobia had little effect on grain yield of wheat. Significant increase in straw yield and N-uptake occurred due to inoculation. A comparison of results of a similar experiment conducted during 1983–84, showed that inoculation with the same strains of rhizobia and application 50 kg N ha−1 as basal dressing, was more effective in increasing yield and N-uptake in wheat cv. HD2329. It appears reasonable to assume occurrence of nitrogen fixation by root nodule bacteria in rhizosphere of wheat.  相似文献   

18.
A comparison of two methods of selenium application, banding and foliar spray, of sodium selenite (Na2SeO3) on total glycoalkaloid (TGA) and nitrate nitrogen (NO3-N) was studied during each of two consecutive years. The levels of application used were 0.0, 1.6 (0.75), 3.36 (1.5), and 5.6 (2.5) kg/ha (ppm soil). Both TGA and NO3-N were significantly reduced by application of 1.5 and 2.5 ppm of sodium selenite. Tuber selenium levels were significantly increased at all levels of application, using either banding or foliar spray, but were well below the toxic range for human consumption. Banding resulted in greater uptake of Se, and greater decreases in TGA and NO3-N as compared to foliar spray.  相似文献   

19.
Drought is a major abiotic stress limiting rice production and yield stability in rainfed ecosystems. Identifying quantitative trait loci (QTL) for rice yield and yield components under water limited environments will help to develop drought resilient cultivars using marker assisted breeding (MAB) strategy. A total of 232 recombinant inbred lines of IR62266/Norungan were used to map QTLs for plant phenology and production traits under rainfed condition in target population of environments. A total of 79 QTLs for plant phenology and production traits with phenotypic variation ranging from 4.4 to 72.8% were detected under non-stress and drought stress conditions across two locations. Consistent QTLs for phenology and production traits were detected across experiments and water regimes. The QTL region, RM204-RM197-RM217 on chromosome 6 was linked to days to 50% flowering and grain yield per plant under both rainfed and irrigated conditions. The same genomic region, RM585-RM204-RM197 was also linked to harvest index under rainfed condition with positive alleles from Norungan, a local landrace. QTLs for plant production and drought resistance traits co-located near RM585-RM204-RM197-RM217 region on chromosome 6 in several rice genotypes. Thus with further fine mapping, this region may be useful as a candidate QTL for MAB, map-based cloning of genes and functional genomics studies for rainfed rice improvement.  相似文献   

20.
Experiments were carried out to determine the effect of Gold-nanoparticles on the growth profile and yield of Brassica juncea, under field conditions. Five different concentrations (0, 10, 25, 50 and 100 ppm) of Gold-nanoparticles were applied through foliar spray. Presence of Gold-nanoparticles in the leaf tissues was confirmed through atomic absorption spectroscopy. Various growth and yield related parameters, including plant height, stem diameter, number of branches, number of pods, seed yield etc. were positively affected by the nanoparticle treatment. Gold-nanoparticle treatment increased the number of leaves per plant; however the average leaf area was not affected. Optimal increase in seed yield was recorded at 10 ppm of Gold-nanoparticle treatment. Reducing as well as total sugar contents increased up to 25 ppm of Gold-nanoparticle treatment. Application of nanoparticles also improved the redox status of the treated plants. The results, for the first time, demonstrate successful use of Gold-nanoparticles in enhancing growth and yield of B. juncea, under actual field conditions and present a viable alternative to GM crops for ensuring food security.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号