首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 622 毫秒
1.
将大肠杆菌精氨酰tRNA合成酶(ArgRS)上Lys306用基因点突变的方法分别变为Ala和Arg的密码子;得到变种基因args306KA和args306KR。变种基因重组在pUC18上,转化到大肠杆菌TG1中,转化子中ArgRS及其变种ArgRS306KA和ArgRS306KR所表达的蛋白量至少为TG1表达ArgRS蛋白量的100倍。细胞粗抽提液中ArgRS的比活TG1、转化子pUC18-args、pUC18-args306KA和pUC18-args306KR分别为1.65、210、1.8和38单位/毫克。结果表明ArsRS的Lys306为Ala取代使活力完全丧失;若被Arg取代,则活力丧失80%以上。Lys306为ArgRS活力所必需。  相似文献   

2.
大肠杆菌精氨酰—tRNA合成酶的Lys306为酶活力所必需   总被引:2,自引:2,他引:0  
将大肠杆菌精氨酰tRNA合成酶(ArgRS)上Lys306用基因点突变的方法分别变为Ala和Arg的密码子,得到变种基因args306KA和args306KR。变种基因重组在pUC18上,转化到大肠杆菌TG1中,转化子中ArgRS及其变种ArgRS306KA和ArgRS306KR所表达的蛋白量生活为TG1表达ArgRS蛋白量的100倍。细胞粗抽提液中ArgRS的比活TG1,转化子pUC18-arg  相似文献   

3.
大肠杆菌精氨酰—tRNA合成酶的变种ArgRS306KR的纯化…   总被引:1,自引:1,他引:0  
本文从含ArgRS306KR基因args306KR的pUC18重组质粒的大肠杆菌TG1转化子中经DEAE-Sephacel和Blue-Sepharose两步柱层析,得到电泳一条带的ArgRS306KR。纯酶的比活为2790单位/毫克。该酶氨酰化和ATP-PPi交换活力的最适PH分别为PH8.3和PH7.5。氨酰化活力对ATP、Arg和tRNA的Km分别2.6mmol/L、14.0μmol/L和5.  相似文献   

4.
大肠杆菌精氨酰—tRNA合成酶变种ArgRS381KA的基本性质   总被引:1,自引:1,他引:0  
本文研究了Ly381变为Ala的精氨酰-tRNA合成酶(ArgRS)变种ArgRS381KA的最适pH和稳态动力学性质;比较了此酶与天然酶ArgRS的荧光光谱性质和热稳定性。实验结果表明ArgRS381KA的氨酰化活力和ATP ̄PPi交换活力的最适pH分别为8.0和7.0,与天然酶相同;ArgRS381KA的氨酰化活力对精氨酸、ATP和tRNA^Arg的Km分别为12μmol/L、0.3mmol/  相似文献   

5.
本文从含ArgRS306KR基因args306KR的pUC18重组质粒的大肠杆菌TG1转化子中经DEAE-Sephacel和Blue-Sepharose两步柱层析,得到电泳一条带的ArgRS306KR。纯酶的比活为2790单位/毫克。该酶氨酰化和ATP~PPi交换活力的最适pH分别为pH8.3和pH7.5。氨酰化活力对ATP、Arg和tRNA的Km分别为2.6mmol/L、14.0μmol/L和5.0μmol/L:Vmax为7630单位/毫克;koat为9S-1。ATP~PPi交换活力对ATP和Arg的Km分别为8.3mmol/L和99μmol/L;Vmax为16320单位/毫克;kcat为18S-1。  相似文献   

6.
本文研究了Lys381变为Ala的精氨酰-tRNA合成酶(ArgRS)变种ArgRS381KA的最适pH和稳态动力学性质;比较了此酶与天然酶ArgRS的荧光光谱性质和热稳定性。实验结果表明ArgRS381KA的氨酰化活力和ATP ̄PPi交换活力的最适pH分别为8.0和7.0,与天然酶相同;ArgRS381KA的氨酰化活力对精氨酸、ATP和tRNAArg的Km分别为12μmol/L、0.3mmol/L和1.1μmol/L,Vmax为16000U/mg,kcat为16s-1;ATP ̄PPi交换活力对精氨酸、ATP和PPi的Km分别为92.9μmol/L、0.85mmol/L和80.1μmol/L,Vmax为28000~30000U/mg,kcat为32s-1.ArgRS381KA的荧光激发光谱和发射光谱与ArgRS基本相同。热失活速度比天然酶慢。  相似文献   

7.
大肠杆菌精氨酰—tRNA合成酶高表达条件的优化及酶…   总被引:3,自引:2,他引:3  
控制培养基中氨苄青霉素的用量、PH和培养时间,从含E.coli args变种ARGS381KA的E.coli TG1转化子中,得到了E.coli ArgRS变种ArgRS381KA的高表达。从2升培养液中得到15克湿菌体,粗抽液中ArgRS381KA的比活为503单位/毫克。经过两次DEAE-Sephacel柱层析,在4天时间内,可得到78毫克电泳一条的纯酶,活力回收达80%。该方法可以作为从含a  相似文献   

8.
本文用吸收光谱、溶剂微扰差光谱荧光光谱和CD光谱对天然酶ArgRS及其变种酶ArgRS306KR和ArgRS381KA的构象进行了研究,结果表明Lys306的突变引起变种酶分子表面的生色氨基酸残基所处微环境与天然酶梢有不同,ArgRS306KA比ArgRS306KR有更大的构象变化。变种酶ArgRS381KA与天然酶的构象差别不大。CD光谱的分析显示转角在变种酶分子中依活力的下降二级结构中所占百分比下降。可以得出结论ArgRS的Lys306所带的正电荷对维系ArgRS的构象绝对重要,这种酶的构象变化引起变种酶的活力丧失;而ArgRS的Lys381的改变则似乎不能引起酶构象的可觉察的变化。  相似文献   

9.
用聚合酶链反应(PCR)以大肠杆菌JM83基因组DNA为模板,扩增了精氨酰-tRNA合成酶(ArgRS)基因。将该基因重组到载体pUC18上转化到大肠杆菌TG1中,得到在转化子中ArgRS的高表达。粗抽液中ArgRS的氨酰化活力,TG1和TG1转化子分别为1.65U/mg和210U/mg,后者为前者的127倍。DNA顺序测定表明,与从大肠杆菌JA200中克隆到的ArgRS基因相比913位碱基为A而不为C,这种变化使ArgRS的305位氨基酸残基由Gln变为Lys,但这种改变不影响酶的活力。  相似文献   

10.
控制培养基中氨苄青霉素的用量、pH和培养时间,从含E.coliargy变种argr381KA的E.coliTG1转化子中,得到了E.coliArgRS变种ArgRS381KA的高表达。从2升培养液中得到15克湿菌体,粗抽液中ArgRS381KA的比活为503单位/毫克。经过两次DEAESephacel层析,在4天时间内,可得到78毫克电泳一条带的纯酶活力回收达80%。该方法可以作为从含args的E.coliTG1转化子中提纯E.coliArsRS的通用方法。  相似文献   

11.
Previous investigations show that tRNA(Arg)-induced conformational changes of arginyl-tRNA synthetase (ArgRS) Omega-loop region (Escherichia coli (E. coli), Ala451-Ala457) may contribute to the productive conformation of the enzyme catalytic core, and E. coli tRNA(2)(Arg)(ICG)-bound and -free conformations of the Omega-loop exchange at an intermediate rate on NMR timescale. Herein, we report that E. coli ArgRS catalyzes tRNA(2)(Arg)(ICG) and tRNA(4)(Arg)(UCU) with similar efficiencies. However, 19F NMR spectroscopy of 4-fluorotryptophan-labeled E. coli ArgRS reveals that the tRNA(4)(Arg)(UCU)-bound and -free conformations of the Omega-loop region interconvert very slowly and the lifetime of bound conformation is much longer than 0.33 ms. Therefore, tRNA(4)(Arg)(UCU) differs from tRNA(2)(Arg)(ICG) in the conformation-exchanging rate of the Omega-loop. Comparative structure model of E. coli ArgRS is presented to rationalize these 19F NMR data. Our 19F NMR and catalytic assay results suggest that the tRNA(Arg)-induced conformational changes of Omega-loop little contribute to the productive conformation of ArgRS catalytic core.  相似文献   

12.
To understand the mechanism of signal propagation involved in the cooperative AMP inhibition of the homotetrameric enzyme pig-kidney fructose-1,6-bisphosphatase, Arg49 and Lys50 residues located at the C1-C2 interface of this enzyme were replaced using site-directed mutagenesis. The mutant enzymes Lys50Ala, Lys50Gln, Arg49Ala and Arg49Gln were expressed in Escherichia coli, purified to homogeneity and the initial rate kinetics were compared with the wild-type recombinant enzyme. The mutants exhibited kcat, Km and I50 values for fructose-2,6-bisphosphate that were similar to those of the wild-type enzyme. The kinetic mechanism of AMP inhibition with respect to Mg2+ was changed from competitive (wild-type) to noncompetitive in the mutant enzymes. The Lys50Ala and Lys50Gln mutants showed a biphasic behavior towards AMP, with total loss of cooperativity. In addition, in these mutants the mechanism of AMP inhibition with respect to fructose-1,6-bisphosphate changed from noncompetitive (wild-type) to uncompetitive. In contrast, AMP inhibition was strongly altered in Arg49Ala and Arg49Gln enzymes; the mutants had > 1000-fold lower AMP affinity relative to the wild-type enzyme and exhibited no AMP cooperativity. These studies strongly indicate that the C1-C2 interface is critical for propagation of the cooperative signal between the AMP sites on the different subunits and also in the mechanism of allosteric inhibition of the enzyme by AMP.  相似文献   

13.
M Liu  Y Huang  J Wu  E Wang  Y Wang 《Biochemistry》1999,38(34):11006-11011
Arginyl-tRNA synthetase (ArgRS) from Escherichia coli (E. coli) contains four cysteine residues. In this study, the role of cysteine residues in the enzyme has been investigated by chemical modification and site-directed mutagenesis. Titration of sulfhydryl groups in ArgRS by 5, 5'-dithiobis(2-nitro benzoic acid) (DTNB) suggested that a disulfide bond was not formed in the enzyme and that, in the native condition, two DTNB-sensitive cysteine residues were located on the surface of ArgRS, while the other two were buried inside. Chemical modification of the native enzyme by iodoacetamide (IAA) affected only one DTNB-sensitive cysteine residue and resulted in 50% loss of enzyme activity, while modification by N-ethylmeimide (NEM) affected two DTNB-sensitive residues and caused a complete loss of activity. These results, when combined with substrate protection experiments, suggested that at least the two cysteine residues located on the surface of the molecule were directly involved in substrates binding and catalysis. However, changing Cys to Ala only resulted in slight loss of enzymatic activity and substrate binding, suggesting that these four cysteine residues in E. coli ArgRS were not essential to the enzymatic activity. Moreover, modifications of the mutant enzymes indicated that the two DTNB- and NEM-sensitive residues were Cys(320) and Cys(537) and the IAA-sensitive was Cys(320). Our study suggested that inactivation of E. coli ArgRS by sulfhydryl reagents is a result of steric hindrance in the enzyme.  相似文献   

14.
Su P  Scheiner-Bobis G 《Biochemistry》2004,43(16):4731-4740
P-type ATPases such as the sodium pump appear to be members of a superfamily of hydrolases structurally typified by the L-2-haloacid dehalogenases. In the dehalogenase L-DEX-ps, Lys151 serves to stabilize the excess negative charge in the substrate/reaction intermediates and Asp180 coordinates a water molecule that is directly involved in ester intermediate hydrolysis. To investigate the importance of the corresponding Lys691 and Asp714 of the sodium pump alpha subunit, sodium pump mutants were expressed in yeast and analyzed for their properties. Lys691Ala, Lys691Asp, Asp714Ala, and Asp714Arg mutants were inactive, not only with respect to ATPase activity but also to interaction with the highly sodium pump-specific inhibitors ouabain or palytoxin (PTX). In contrast, conservative mutants Lys691Arg and Asp714Glu retained some of the partial activities of the wild-type enzyme, although they completely failed to display any ATPase activity. Yeast cells expressing Lys691Arg and Asp714Glu mutants are sensitive to the sodium pump-specific inhibitor PTX and lose intracellular K+. Their sensitivity to PTX, with EC50 values of 118 +/- 24 and 76.5 +/- 3.6 nM, respectively, was clearly reduced by almost 7- or 4-fold below that of the native sodium pump (17.8 +/- 2.7 nM). Ouabain was recognized under these conditions with low affinity by the mutants and inhibited the PTX-induced K+ efflux from the yeast cells. The EC50 for the ouabain effect was 183 +/- 20 microM for Lys691Arg and 2.3 +/- 0.08 mM for the Asp714Glu mutant. The corresponding value obtained with cells expressing the native sodium pump was 69 +/- 18 microM. In the presence of Pi and Mg2+, none of the mutant sodium pumps were able to bind ouabain. When Mg2+ was omitted, however, both Lys691Asp and Asp714Glu mutants displayed ouabain binding that was reduced by Mg2+ with an EC50 of 0.76 +/- 0.11 and 2.3 +/- 0.2 mM, respectively. In the absence of Mg2+, ouabain binding was also reduced by K+. The EC50 values were 1.33 +/- 0.23 mM for the wild-type enzyme, 0.93 +/- 0.2 mM for the Lys691Arg mutant, and 1.02 +/- 0.24 mM for the Asp714Glu enzyme. None of the neutral or nonconservative mutants displayed any ouabain-sensitive ATPase activity. Ouabain-sensitive phosphatase activity, however, was present in membranes containing either the wild-type (1105 +/- 100 micromol of p-nitrophenol phosphate hydrolyzed min(-1) mg of protein(-1)) or the Asp714Glu mutant (575 +/- 75 micromol min(-1) mg(-1)) sodium pump. Some phosphatase activity was also associated with the Lys691Arg mutant (195 +/- 63 micromol min(-1) mg(-1)). The results are consistent with Lys691 and Asp714 being essential for the phosphorylation/dephosphorylation process that allows the sodium pump to accomplish the catalytic cycle.  相似文献   

15.
Yao YN  Zhang QS  Yan XZ  Zhu G  Wang ED 《FEBS letters》2003,547(1-3):197-200
The 19F nuclear magnetic resonance (NMR) spectra of 4-fluorotryptophan (4-F-Trp)-labeled Escherichia coli arginyl-tRNA synthetase (ArgRS) show that there are distinct conformational changes in the catalytic core and tRNA anticodon stem and loop-binding domain of the enzyme, when arginine and tRNA(Arg) are added to the unliganded enzyme. We have assigned five fluorine resonances of 4-F-Trp residues (162, 172, 228, 349 and 446) in the spectrum of the fluorinated enzyme by site-directed mutagenesis. The local conformational changes of E. coli ArgRS induced by its substrates observed herein by 19F NMR are similar to those of crystalline yeast homologous enzyme.  相似文献   

16.
A heterologous expression system of the blue copper-containing nitrite reductase from Alcaligenes xylosoxidans GIFU1051 (AxgNIR) was constructed, and the purified recombinant enzyme was characterized. All the characteristic spectroscopic properties and enzyme activity of native AxgNIR were retained in the copper-reconstituted recombinant protein expressed in Escherichia coli, indicating the correct coordination of two types of Cu (type 1 and 2) in the recombinant enzyme. Moreover, two conserved noncoordinate residues, Asp98 and His255, located near the type 2 Cu site were replaced to elucidate the catalytic residue(s) of NIR. The Asp98 residue hydrogen-bonded to the water molecule ligating the type 2 Cu was changed to Ala, Asn, or Glu, and the His255 residue hydrogen-bonded to Asp98 through the water molecule was replaced with Ala, Lys, or Arg. The catalytic rate constants of all mutants were decreased to 0.4-2% of those of the recombinant enzyme, and the apparent K(m) values for nitrite were greatly increased in the Asp98 mutants. All the steady-state kinetic data of the mutants clearly demonstrate that both Asp98 and His255 are involved not only in the catalytic reaction but also in the substrate anchoring.  相似文献   

17.
Human alpha-chymase is an efficient angiotensin (AT) converting enzyme, selectively hydrolyzing AT I at Phe8 to generate bioactive AT II, which can promote cardiac hypertrophy, vascular stenosis, and hypertension. Some related enzymes, such as rat beta-chymase 1, are much less selective, destroying AT by cleaving at Tyr4. Comparisons of chymase structure and activity led to speculation that interaction between AT and the side chain of Lys40 or Arg143 accounts for the human enzyme's marked preference for Phe8 over Tyr4. To test these hypotheses, we compared AT hydrolysis by wild-type chymase with that by mutants changing Lys40 or Arg143 to neutral residues. Lys40 was exchanged for alanine, the residue found in canine alpha- and rat beta-chymase 1, the latter being dramatically less selective for hydrolysis at Phe8. Arg143 was exchanged for glutamine found in rat beta-chymase 1. The Lys40Ala mutant is a dog-like enzyme retaining strong preference for Phe8 but with Tyr4 hydrolytic rates enhanced 16-fold compared to wild-type human enzyme. Thus, of 40 residues mismatched between dog and human enzymes, a single residue accounts for most of the difference in specificity between them. The Arg143Gln mutant, contrary to prediction, remains highly Phe8-selective. Therefore, Lys40, but not Arg143, contributes to human chymase's remarkable preference for AT II generation over destruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号