首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The conformational states in dioxane and ethanol of gramicidin A and of analogs varying in chain length and amino acid sequence have been studied. Infrared, CD, and polarization of fluorescence spectra of the peptides were measured, from which dimerization constants were determined and spectral characteristics of the monomeric and dimeric states obtained. Resonance splitting of the amide I ir band has been calculated for all gramicidin A models proposed earlier. Detailed comparison of the experimental and computed spectra showed that the four dimeric gramicidin species present in solution are predominantly antiparallel double ?ππld helices in equilibrium with smaller amounts of head-to-head associated πLD helices. The gramicidin A monomer was found to be a πLD4.4 helix in dioxane. For each conformational form the number of residues per turn and the helical sense were determined. The relationship between the amino acid sequence and the structure and stability of the dimer in the series of gramicidin A and its analogs is discussed. The above findings are rationalized in terms of the membrane channel properties of gramicidin A, in particular the conformational rearrangements occurring during the passage of metal ions through the channel and also the differences in conformation of the antibiotic in nonpolar solutions and in the membrane.  相似文献   

2.
The ionic mechanisms underlying modulatory effects of serotonin on acetylcholine-response in identified and nonidentifiedHelix pomatia neurons were investigated using voltage-clamping techniques at the neuronal membrane. External application of 10–5–10–4 M serotonin to the membrane of neurons responding to application of acetylcholine depending on Na+ depolarization (DNa response) reduced membrane conductivity during response to acetylcholine without changing reversal potential of acetylcholine-induced current. Acetylcholine (10–6–10–4 M) administration took place 1–3 min later. Neurons with response to acetylcholine application dependent on Cl+ depolarization (DCl response) or hyperpolarization (HCl response) behaved similarly. Analogous effects could be produced by external application of theophylline which, together with the latency and residual effect characteristic of serotonin action points to the participation of intracellular processes associated with the cellular cyclase system in the changes produced by serotonin in acetylcholineinduced response. Serotonin brought about a shift in reversal potential and an increase in the acetylcholine-induced current in those neurons where this response was associated with changed permeability at the membrane to certain types of ions. During two-stage acetylcholine-induced response of the DNa-HK type, serotonin inhibited the inward current stage. Mechanisms underlying modulatory serotonin action on acetylcholine-induced response in test neurons are discussed in the light of our findings.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 1, pp. 57–64, January–February, 1988.  相似文献   

3.
Kononeko  N. I.  Osipenko  O. N. 《Neurophysiology》1988,20(5):477-483
Inward current produced by applying oxytocin (OT) to the neuronal soma (OTI) current) under conditions of voltage-clamping at the cell membrane was investigated inHelix pomatia. Replacing sodium with Tris ions in the external medium produced a considerable decline in OTI current. A reduction in the external concentration of chlorine ions by replacement with HEPES ions induced an increase in OTI current and a shift in its current-voltage relationship towards depolarization values. The presence of furosemide in the external solution reversibly inhibited OTI current. This current likewise declined reversibly following external application of imidazole and tolbutamide but was increased by theophylline action. It was inferred that OT receptors are present on the surface membrane of someHelix neurons which, when activated, lead to increased chlorine permeability — a process apparently mediated via the cyclic nucleotide system.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR. Kiev. Translated from Neirofiziologiya, Vol. 20, No. 5, pp. 652–659, September–October, 1988.  相似文献   

4.
Phytochrome contents have been assayed in vivo in cell suspension cultures of Petroselinum hortense, Daucus carota and Glycine max. After transferring the cells to fresh medium phytochrome increased in parallel with the increase in cell number, whereas the amount of phytochrome per cell remained constant. The rate of phytochrome reaccumulation after pretreatment with 15 h red light was very similar in all three systems (2.8–3.6 (e) 10–5/h). Dark reversion and a fast and slow Pfr destruction were observed in all systems. The rate constants of these reactions varied strongly between the systems. The phytochrome systems of the cell cultures were compared with those of etiolated and light-grown seedlings and it was concluded that the cell suspension cultures of Petroselinum hortense and Daucus carota behaved similarly to light-grown seedlings. In contrast, those of Glycine max behaved similarly to a dark grown seedling.Abbreviations Pr'fr red, far-red absorbing forms of phytochrome - Ptot Pr+Pfr total amount of phytochrome - fwt fresh weight  相似文献   

5.
By intracellular dialysis of isolated neurons of the mollusksHelix pomatia andLimnaea stagnalis and by a voltage clamp technique the characteristics of transmembrane ionic currents were studied during controlled changes in the ionic composition of the extracellular and intracellular medium. By replacing the intracellular potassium ions by Tris ions, functional blocking of the outward potassium currents was achieved and the inward current distinguished in a pure form. Replacement of Ringer's solution in the extracellular medium with sodium-free or calcium-free solution enabled the inward current to be separated into two additive components, one carried by sodium ions, the other by calcium ions. Sodium and calcium inward currents were found to have different kinetics and different potential-dependence: mNa=1±0.5 msec, mCa=3±1 msec, hNa=8±2 msec, hCa=115±10 msec (Vm=0), GNa=0.5 (Vm=–21±2 mV), GCa=0.5 (Vm=–8±2 mV). Both currents remained unchanged by tetrodotoxin, but the calcium current was specifically blocked by cadmium ions (2·10–3 M), verapamil, and D=600, and also by fluorine ions if injected intracellularly. All these results are regarded as evidence that the soma membrane of the neurons tested possesses separate systems of sodium and calcium ion-conducting channels. Quantitative differences are observed in the relative importance of the systems of sodium and calcium channels in different species of mollusks.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 2, pp. 183–191, March–April, 1976.  相似文献   

6.
Summary A mathematical treatment is given for the flux of ions of one charge sign across lipid bilayer membranes. This treatment is a generalization of a previous analysis of the membrane conductance by D. Walz, E. Bamberg and P. Läuger which was restricted to systems with negligible space charge in the membrane. The present theory includes space charge effects, and it is no longer assumed that the electric field strength in the membrane is constant. It is found that the ohmic membrane conductivity 0 is reduced by space charges; if only ions of one charge sign are soluble in the membrane, 0 approaches a limiting value for increasing concentration of the permeable ion in the aqueous solution. The theory also predicts the range in which the constant field approximation is valid. It is found that space charge effects become predominant when the mean concentration of the permeable ion in the membrane exceeds 5×10–5 m. The currentvoltage characteristic of the membrane remains practically linear even in the presence of a high space charge. It is therefore concluded that the experimentally observed nonlinearity is caused mainly by the distortion of the potential energy profile of an ion due to image forces.  相似文献   

7.
The formation kinetics of gramicidin A channels in lipid bilayer membranes has been characterized as a function of voltage for different solution conditions and membrane composition. The frequency of channel events was measured during the application of voltage ramps and counted in given intervals, a procedure that eliminated the effects of drift in gramicidin concentration. The formation rate was found to increase strongly with voltages up to approximately 50 mV and then to level off slightly. The shape of the voltage dependence was independent of lipid solvent and ramp speed but differed for different ions and different solution concentrations. This suggested an ion occupancy effect on the formation rate that was further supported by the fact that the minimum of the formation rate was shifted toward the equilibrium potential in asymmetric solution concentrations. The effects are explained in terms of a model that contains two contributions to the voltage dependence, a voltage-dependent ion binding to the monomers and a polarization of monomers by the applied electric field and by the occupied ions. The theory is found to give a good fit to experimental data.  相似文献   

8.
Recent success in the preparation of the monomer, dimer and trimer in compound 48/80 prompted us to investigate the action of these compounds on Escherichia coli cells. It was found that compound 48/80 inhibited growth of E. coli cells, while the monomer, dimer and trimer in 48/80 did not. However, the following experiments showed that the dimer and trimer disrupted the permeability barrier of the outer membrane of E. coli. First, addition of the dimer or trimer in cell suspension stimulated the uptake of tetraphenylphosphonium cation. Second, the synergistic effect of the dimer on the action of gramicidin caused the efflux of K+. In experiments using isolated cytoplasmic membrane vesicles, addition of gramicidin alone caused the efflux of K+. Thus, it was speculated that, with whole cells, the dimer formed some defect structure in the outer membrane, through which gramicidin reached the cytoplasmic membrane and increased the K+ permeability. The temperature dependence of efflux K+ showed that the dimer in 48/80 rendered the outer membrane permeable to gramicidin at temperatures above the phase transition of the outer membrane.  相似文献   

9.
Apell  H. -J.  Bamberg  E.  Alpes  H.  Läuger  P. 《The Journal of membrane biology》1977,31(1):171-188
Summary O-pyromellitylgramicidin is a derivative of gramicidin in which three carboxyl groups are introduced at the terminal hydroxyl end of the peptide. Experiments with artificial lipid membranes indicate that this negatively charged analog forms ion-permeable channels in a way similar to that of gramicidin. If O-pyromellitylgramicidin is added to only one aqueous solution, the membrane conductance remains small, but increases by several orders of magnitude if the same amount is also added to the other side. In accordance with the dimer model of the channel, the membrane conductance under symmetrical conditions is proportional to the square of the aqueous concentration of O-pyromellitylgramicidin over a wide range. The ratio PG/ G of the single-channel conductance of O-pyromellitylgramicidin to that of gramicidin is close to unity at high ionic strength, but increases more than fivefold at smaller ionic strength (0.01m). This observation is explained in terms of an electrostatic effect of the fixed negative charges localized near the mouth of the channel. In a mixture of O-pyromellitylgramicidin and gramicidin, unit conductance steps of intermediate size are observed in addition to the conductance steps corresponding to the pure compounds, indicating the formation of hybrid channels. Hybrid channels with preferred orientation may be formed if small amounts of gramicidin and O-pyromellitylgramicidin are added to opposite sides of the membrane. These hybrid channels show a distinct asymmetry in the current-voltage characteristic.  相似文献   

10.
Currents passing through individual potassium channels with anomalous (inward) rectification were recorded at the neuronal membrane ofPlanorbarius corneus using the patch clamp technique. These currents could be detected, whether in "right side out" or "inside out" configurations in the presence of 50 mM potassium ions or one of the potassium channel blockers: tetraethylammonium (TEA), barium, or cesium (2–20 mM) on the external side of the membrane. Inward currents were observed in individual channels at potentials more negative than level of potassium equilibrium potential (Ek); conductance of these measured 81±12 pS (n=11). At more positive potentials than Ek, conductance fell to zero. Potassium channels with anomalous (inward) rectification inPlanorbarius corneus resemble equivalent channels in other cells in their kinetics: time scale of the open state may be described by a single exponential function. This would imply that the ionic channel has a single open state. Time scale of the closed state was biexponential, thus indicating the possible existence of two kinetically different nonconducting states of the potassium channel with anomalous (inward) rectification at the neuronal membrane ofPlanorbarius corneus.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 21, No. 1, pp. 31–38, January–February, 1989.  相似文献   

11.
Photosensitized efficacy of tetrasulfonated phthalocyanines of zinc, aluminum and nickel (ZnPcS4, AlPcS4 and NiPcS4, respectively) as studied by gramicidin channel (gA) photoinactivation was compared with adsorption of the dyes on the surface of a bilayer lipid membrane as measured by the inner field compensation method. The adsorption of the negatively charged phthalocyanines on diphytanoylphosphatidylcholine (DPhPC) membranes led to formation of a negative boundary potential difference between the membrane/water interfaces. Good correlation was shown between the photodynamic activity and the membrane binding of the three metallophthalocyanines. ZnPcS4 appeared to be the most potent of these photosensitizers, while NiPcS4 was completely ineffective. All of these phthalocyanines displayed no binding and negligible gA photoinactivation with membranes formed of glycerol monooleate (GMO), whereas Rose Bengal exhibited significant binding and photodynamic efficacy with GMO membranes. Gramicidin photoinactivation in the presence of AlPcS4, being insensitive to the ionic strength of the bathing solution, was inhibited by fluoride and attenuated by phosphate ions. A blue shift of the fluorescence peak position of ZnPcS4 dissolved in ethanol was elicited by phosphate, similarly to fluoride, which was indicative of the coordination interaction of these ions with the central metal atom of the phthalocyanine macrocycle. This interaction was enhanced in the medium modeling the water-membrane interface. The results obtained imply that binding of tetrasulfonated metallophthalocyanines to phospholipid membranes is determined primarily by metal-phosphate coordination.  相似文献   

12.
The photosynthetic sulfur bacterium, Chromatium vinosum, was cultured in inorganic photographic processing solutions containing silver thiosulfate complex salt (AgNa3(S2O3)2) under light. It was found that Chromatium was resistant to Ag and accumulated granular silver in the membrane during growth. The amount of Ag accumulated in the cells depended on the initial concentrations of the Ag salt in the culture solution. When the concentration of Ag was 300 mg/l, the bacteria accumulated Ag as high as 30% of the dry cell weight. The size of the granules was 0.1 to 0.3 m. Results from X-ray microanalysis indicated that these granules consisted mostly of Ago with small fractions of Ag2S and AgCl.  相似文献   

13.
Summary Recently, antibiotics have enjoyed widespread usage as tools in studies of epithelial transport. In the present study we assess the usefulness of the pore-forming antibiotic gramicidin D as a means for probing the electrical properties of the tight epithelium rabbit urinary bladder. Addition of 50 M gramicidin to the mucosal bath (either a NaCl or KCl Ringer's solution) led to a large irreversible increase in the transepithelial conductance (G T ) within 800 sec.G T increased by approximately 1200% and 500% in KCl and NaCl Ringer's solutions, respectively. Microelectrode measurements of the resistance ration (the ration of apical membrane resitance to basolateral membrane resistance) showed that apical membrane resistance is dereased by the drug. Measurements of the basolateral membrane resistance (R bl ) and tight junctional resistance (R j ) using a new and independent method (based on the perturbation of basolateral membrane electrogenic Na+ pump) demonstrated thatR bl andR j were unaffected, suggesting that the effects of gramicidin are restricted to the apical membrane for periods of at least 2 hours after drug addition. The selectivity of the gramicidin-induced permeability in the apical membrane was calculated from measurements of the apical membrane potential after ion substitutions using a modified version of the constant field equation. The selectivity sequence for cations was Cs+>K+>Na+>Li+>choline. Unlike the commonly used polyene antibiotics nystatin and amphotericin B, gramicidin did not induce a significant Cl permeability. In addition, the dose-response curve had a slope of 1. A method is described for calculating membrane resistances directly from transepithelial measurements under some conditions of gramicidin use, without requiring the use of microlectrode measurements.  相似文献   

14.
Early membrane currents of the isolated neuron soma of the mollusksHelix pomatia,Limnaea stagnalis, andPlanorbis corneus in normal and sodium-free solutions differing in their calcium ion concentration were investigated by the voltage clamp method. The early inward current was shown to continue when the sodium ions in the external solution were replaced by an equivalent number of calcium ions and to be increased with an increase in the concentration of those ions in all neurons of these mollusks investigated. A change in the calcium concentration in the external solution shifted the inactivation curves and also the curves of conductance for the inward current along the potential axis. It is concluded that a system of calcium channels exists in the somatic membrane of neurons in these species of mollusks.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 6, pp. 621–627, November–December, 1973.  相似文献   

15.
Gramicidin is a polypeptide antibiotic that forms monovalent cation-specific channels in membrane environments. In organic solvents and in lipids containing unsaturated fatty acid chains, it forms a double-helical "pore" structure, in which two monomers are intertwined. This form of gramicidin can bind two cations inside its lumen, and the crystal structures of both an ion complex and an ion-free form have been determined. In this study, we have used circular dichroism (CD) spectroscopy to examine the binding mechanism and the binding constants (K1 and K2) of cations to gramicidin in the double helical form in methanol solution. The dramatic change in optical rotation in the far-ultraviolet CD spectrum of gramicidin provides a useful tool for monitoring the binding. The binding mechanism appears to involve a large conformation change associated with the binding of ions to the first of the two sites. The calculated values for the K1 binding constants for alkaline cations are considerably smaller than the K2 binding constants. The order of binding affinity for alkaline cations is similar to that for the helical dimer "channel" form of gramicidin, i.e., Cs+ approximately Rb+ > > K+ > Li+, but in comparison to the helical dimer form, the binding to double-helical dimers is dominated by a cation size-dependent conformational change in the gramicidin structure.  相似文献   

16.
Kononenko  N. I.  Osipenko  O. N. 《Neurophysiology》1988,20(5):483-488
The ionic mechanisms of hyperpolarization produced by applying oxytocin (OT) were investigated at the membrane of identifiedHelix pomatia neurons. Two types of neuron were known to exist, in one of which hyperpolarization is produced by a reduction in chloride ions at the membrane and a rise in membrane permeability to potassium ions in the other. In the first of these, response to OT had a reversal potential of –40 mV and decreased when furosemide and tolbutamide were added to the external medium. In the second case, the potential of the reversal of the response to OT was –70 mV. Upon doubling of potassium ion concentration in the external solution it was shifted towards depolarization by 15 mV. It is sugested thatHelix pomatia neurons have different types of OT receptors, some of which, when activated, manifest reduced chloride permeability at the membrane (probably through the cell cyclase system) with a rise in potassium permeability at the membrane in others.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 5, pp. 659–666, September–October, 1988.  相似文献   

17.
The effect of membrane dipole potential on gramicidin channel activity in bilayer lipid membranes (BLMs) was studied. Remarkably, it appeared that proton conductance of gramicidin A (gA) channels responded to modulation of the dipole potential oppositely as compared with gA alkali metal cation conductance. In particular, the addition of phloretin, known to reduce the membrane dipole potential, resulted in a decrease in gA proton conductance, on one hand, and an increase in gA alkali metal conductance, on the other hand, whereas 6-ketocholestanol, the agent raising the membrane dipole potential, provoked an increase in gA proton conductance as opposed to a decrease in the alkali metal cation conductance. The peculiarity of the 6-ketocholestanol effect consisted in its dependence on the H(+) concentration. The experiments with the impermeant dipolar compound, phloridzin, showed that the response of proton transport through gramicidin channels to varying the membrane dipole potential did not change qualitatively if the dipole potential of only one monolayer or both monolayers of the BLM was altered. In contrast to gA proton conductance, the single-channel lifetime changed similarly with varying the membrane dipole potential, regardless of the kind of permeant cations (protons or potassium ions). The results of this study could be tentatively accounted for by an assumption that one of the rate-limiting steps of proton conduction through gramicidin channels represents, in fact, movement of negatively charged species (negative ionic defects) across a membrane.  相似文献   

18.
Abstract

Treatment of poly-acetyl or -benzoyl protected ribonucleosides (1a-i) and 2′-deoxyribonucleosides (3a-d) with metal carbonates such as NaHCO3 or Na2CO3 in MeOH gave the corresponding deacylated free ribomucleosides (2a-d and 4a-b) in excellent high yields.  相似文献   

19.
N E Shvinka  G Caffier 《Biofizika》1983,28(6):1006-1009
Conductance of single fibres from m. ileofibularis of Rana esculenta was studied in isotonic K2SO4 solution under constant current conditions using the double sucrose gap method. It was found that Tl+ (at concentrations 5, 10, and 20 mM) blocked K+ currents in the gramicidin channel. The decrease of K+ conductance caused by Tl+ was associated with the changes of the membrane potential. Both the decrease of K+ conductance and value of permeability ratio (PTl/PK) found from the membrane potential changes depended on Tl+ concentration in the bathing solution. No effect of Tl+ on the potassium channels was registered in the absence of gramicidin channels. The Tl+ block described here proves the existence of Tl+ ion binding within gramicidin channels of the muscle membrane and interactions among ions in the channels.  相似文献   

20.
The cyclopeptide antibiotic gramicidin S taken at a concentration of 100--200 mkg/mg membrane protein rapidly increases the permeability of M. lysodeikticus protoplast membranes for substrates of respiratory chain and exogenous cytochromes c. Prolonged incubation of gramicidin S with protoplasts results in their lysis which is more fast at low temperatures. In contrast to natural gramicidin, a derivative of gramicidin S with acetylated amino groups does not inhibit either the micrococcus membrane dehydrogenase or the whole of respiratory chain and does not affect the osmotic barrier of protoplasts. Aliphatic diamines (at concentrations up to 0.1 M) and Ca2+ ions (10(-2) M) do not affect the functioning of the respiratory chain in isolated micrococcus membranes. Another derivative of the antibiotic with an increased distance of loaded amino groups from the cyclopeptide framework (diglycyl gramicidin S) affects the membrane in a way similar to that of natural gramicidin. Washing of gramicidin-treated membranes with NaCl enhances the inhibitory effect of the antibiotic on membrane enzymes. The data obtained suggest that in addition to ionic interactions some hydrophobic interactions also occur during gramicidin S binding to the bacterial membrane, probably at the expense of a hydrophobic peptide ring. It is assumed that gramicidin S, similar to Ca2+ and some other membranotropic agents provides for phase separation of negatively charged phospholipids from other groups of phospholipids, manifesting itself in an appearance of "frozen" sites on the membrane which destroys its barrier properties. This is due to the formation of ionic bonds of negatively charged phospholipids. Simultaneously, unlike Ca2+, gramicidin S, when interacting with membrane proteins, prevents their redistribution in more liquid parts of the membrane, which results in a situation when the respiratory enzymes become surrounded by alkyl chains with restricted motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号