首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A large part of the hexokinase activity of the rat brain 20,000g supernatant became mitochondrial bound when incubated with rat heart mitochondria which had been pretreated with glucose-6-phosphate. This binding was dependent on small-molecular compounds (as yet unidentified) of the brain supernatant. Divalent cations, spermine, and pentalysine strongly stimulated the binding of brain supernatant hexokinase to heart mitochondria. Inorganic phosphate, alpha-glycerophosphate, and fructose-1,6-diphosphate showed some stimulatory effect. No effect was observed with insulin or glucose. Mitochondria isolated from hearts of fasted rats had less specific hexokinase activity than mitochondria from fasted and then carbohydrate refed rats. This dietary treatment had no significant effect on the total heart hexokinase activity. Oligomycin did not inhibit the formation of creatine phosphate or glucose-6-phosphate by isolated rabbit heart mitochondria incubated in the presence of phosphoenolpyruvate and pyruvate kinase. However, the presence of creatine inhibited the formation of glucose-6-phosphate when the ATP/ADP ratio was low, indicating that creatine kinase has a greater access to ATP/ADP translocation than has hexokinase.  相似文献   

2.
Interactions between intramitochondrial ATP-generating, ADP-requiring processes and ATP-requiring, ADP-generating phosphorylation of glucose by mitochondrially bound hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) have been investigated using well-coupled mitochondria isolated from rat brain. ADP generated by mitochondrially bound hexokinase was more effective at stimulating respiration than was ADP generated by hexokinase dissociated from the mitochondria, and pyruvate kinase was less effective as a scavenger of ADP generated by the mitochondrially bound hexokinase than was the case with ADP generated by the dissociated enzyme. These results indicate that ADP generated by the mitochondrially bound enzyme is at least partially sequestered and directed toward the mitochondrial oxidative phosphorylation apparatus. Under the conditions of these experiments, the maximum rate of ATP production by oxidative phosphorylation was approximately 10-fold greater than the maximum rate of ATP generation by the adenylate kinase reaction. Moreover, during periods of active oxidative phosphorylation, adenylate kinase made no detectable contribution to ATP production. Thus, adenylate kinase does not represent a major source of ATP for hexokinase bound to actively phosphorylating brain mitochondria. With adenylate kinase as the sole source of ATP, a steady state was attained in which ATP formation was balanced by utilization in the hexokinase reaction. In contrast, when oxidative phosphorylation was the source of ATP, a steady state rate of Glc phosphorylation was attained, but it was equivalent to only about 40-50% of the rate of ATP production and thus there was a continued net increase in ATP concentration in the system. Rates of Glc phosphorylation with ATP generated by oxidative phosphorylation exceeded those seen with equivalent levels of exogenously added ATP. Moreover, at total ATP concentrations greater than approximately 0.2 mM, hexokinase bound to actively phosphorylating mitochondria was unresponsive to continued slow increases in ATP levels; acute increase in ATP (by addition of exogenous nucleotide) did, however, result in increased hexokinase activity. The relative insensitivity of mitochondrially bound hexokinase to extramitochondrial ATP suggested dependence on an intramitochondrial pool (or pools) of ATP during active oxidative phosphorylation. Two intramitochondrial compartments of ATP were identified based on their selective release by inhibitors of electron transport or oxidative phosphorylation. These compartments were distinguished by their sensitivity to inhibitors and the kinetics with which they were filled with ATP generated by oxidative phosphorylation. Exogenous glycerol kinase competed effectively with mitochondrially bound hexokinase for extramitochondrial ATP, with relatively low levels of glycerol kinase completely inhibiting phosphorylation of Glc.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Abstract: The enzyme complement of two different mitochondrial preparations from adult rat brain has been studied. One population of mitochondria (synaptic) is prepared by the lysis of synaptosomes, the other (nonsynaptic or free) by separation from homogenates. These populations have been prepared from distinct regions of the brain: cortex, striatum, and pons and medulla oblongata. The following enzymes have been measured: pyruvate dehydrogenase (EC 1.2.4.1), citrate synthase (EC 4.1.3.7), NAD-linked isocitrate dehydrogenase (EC 1.1.1.41), NADP-linked isocitrate dehydrogenase (EC 1.1.1.42), fumarase (EC 4.2.1.2), NAD-linked malate dehydrogenase (EC 1.1.1.37), D-3-hydroxybutyrate dehydrogenase (EC 1.1.1.30), and mitochondrially bound hexokinase (EC 2.7.1.1) and creatine kinase (EC 2.7.3.2). The nonsynaptic (free) mitochondria show higher enzyme specific activities in the regions studied than the corresponding values recorded for the synaptic mitochondria. The significance of these observations is discussed in the light of the different metabolic activities of the two populations of mitochondria and the compartmentation of the metabolic activities of the brain.  相似文献   

4.
A major fraction of hexokinase was found to be bound, presumably to mitochondria, in both normal and tumoral rat pancreatic islet cells examined after either mechanical disruption or digitonin treatment. Spermidine enhanced the binding and glucose 6-phosphate caused the release of hexokinase to and from islet mitochondria, in a manner comparable to that seen in parotid or brain homogenates. In hepatocytes, some hexokinase, but no glucokinase, was found in the bound form. In islet cells, however, the pattern of glucokinase binding was similar to that of hexokinase. It is speculated that the preferential location of both hexokinase and glucokinase on mitochondria may favor the maintenance of a high cytosolic ATP content in islet cells.  相似文献   

5.
Previous studies from this laboratory have shown that mitochondrial bound hexokinase is markedly elevated in highly glycolytic hepatoma cells (Parry, D. M., and Pedersen, P.L. (1983) J. Biol. Chem. 258, 10904-10912). A pore-forming protein, porin, within the outer membrane appears to comprise at least part of the receptor site (Nakashima, R.A., Mangan, P.S., Colombini, M., and Pedersen, P.L. (1986). Biochemistry 25, 1015-1021). In studies reported here experiments were carried out to assess the functional significance of mitochondrial bound tumor hexokinase. Two approaches were used to determine whether the bound enzyme has preferred access to mitochondrially generated ATP relative to cytosolic ATP. The first approach compared the time course of glucose 6-phosphate formation by AS-30D hepatoma mitochondria under conditions where ATP was regenerated endogenously via oxidative phosphorylation or exogenously by added pyruvate kinase and phosphoenolpyruvate. The second approach involved the measurement of the specific radioactivity of glucose 6-phosphate formed following the addition of [gamma-32P]ATP to either phosphorylating or nonphosphorylating AS-30D mitochondria. Both approaches provided results which show that the source of ATP for bound hexokinase is derived preferentially from the ATP synthase residing within the inner mitochondrial membrane compartment rather than from the medium (i.e. from the cytosolic compartment). These results provide the first direct demonstration that the exceptionally high level of hexokinase bound to mitochondria of highly glycolytic tumor cells has preferred access to mitochondrially generated ATP, a finding that may have rather profound metabolic significance for such tumors.  相似文献   

6.
1. A method is described for extracting separately mitochondrial and extramitochondrial enzymes from fat-cells prepared by collagenase digestion from rat epididymal fat-pads. The following distribution of enzymes has been observed (with the total activities of the enzymes as units/mg of fat-cell DNA at 25 degrees C given in parenthesis). Exclusively mitochondrial enzymes: glutamate dehydrogenase (1.8), NAD-isocitrate dehydrogenase (0.5), citrate synthase (5.2), pyruvate carboxylase (3.0); exclusively extramitochondrial enzymes: glucose 6-phosphate dehydrogenase (5.8), 6-phosphogluconate dehydrogenase (5.2), NADP-malate dehydrogenase (11.0), ATP-citrate lyase (5.1); enzymes present in both mitochondrial and extramitochondrial compartments: NADP-isocitrate dehydrogenase (3.7), NAD-malate dehydrogenase (330), aconitate hydratase (1.1), carnitine acetyltransferase (0.4), acetyl-CoA synthetase (1.0), aspartate aminotransferase (1.7), alanine aminotransferase (6.1). The mean DNA content of eight preparations of fat-cells was 109mug/g dry weight of cells. 2. Mitochondria showing respiratory control ratios of 3-6 with pyruvate, about 3 with succinate and P/O ratios of approaching 3 and 2 respectively have been isolated from fat-cells. From studies of rates of oxygen uptake and of swelling in iso-osmotic solutions of ammonium salts, it is concluded that fat-cell mitochondria are permeable to the monocarboxylic acids, pyruvate and acetate; that in the presence of phosphate they are permeable to malate and succinate and to a lesser extent oxaloacetate but not fumarate; and that in the presence of both malate and phosphate they are permeable to citrate, isocitrate and 2-oxoglutarate. In addition, isolated fat-cell mitochondria have been found to oxidize acetyl l-carnitine and, slowly, l-glycerol 3-phosphate. 3. It is concluded that the major means of transport of acetyl units into the cytoplasm for fatty acid synthesis is as citrate. Extensive transport as glutamate, 2-oxoglutarate and isocitrate, as acetate and as acetyl l-carnitine appears to be ruled out by the low activities of mitochondrial aconitate hydratase, mitochondrial acetyl-CoA hydrolyase and carnitine acetyltransferase respectively. Pathways whereby oxaloacetate generated in the cytoplasm during fatty acid synthesis by ATP-citrate lyase may be returned to mitochondria for further citrate synthesis are discussed. 4. It is also concluded that fat-cells contain pathways that will allow the excess of reducing power formed in the cytoplasm when adipose tissue is incubated in glucose and insulin to be transferred to mitochondria as l-glycerol 3-phosphate or malate. When adipose tissue is incubated in pyruvate alone, reducing power for fatty acid, l-glycerol 3-phosphate and lactate formation may be transferred to the cytoplasm as citrate and malate.  相似文献   

7.
Biopsies from 15 human gliomas, five meningiomas, four Schwannomas, one medulloblastoma, and four normal brain areas were analyzed for 12 enzymes of energy metabolism and 12 related metabolites and cofactors. Samples, 0.01-0.25 microgram dry weight, were dissected from freeze-dried microtome sections to permit all the assays on a given specimen to be made, as far as possible, on nonnecrotic pure tumor tissue from the same region. Great diversity was found with regard to both enzyme activities and metabolite levels among individual tumors, but the following generalities can be made. Activities of hexokinase, phosphorylase, phosphofructokinase, glycerophosphate dehydrogenase, citrate synthase, and malate dehydrogenase levels were usually lower than in brain; glycogen synthase and glucose-6-phosphate dehydrogenase were usually higher; and the averages for pyruvate kinase, lactate dehydrogenase, 6-phosphogluconate dehydrogenase, and beta-hydroxyacyl coenzyme A dehydrogenase were not greatly different from brain. Levels of eight of the 12 enzymes were distinctly lower among the Schwannomas than in the other two groups. Average levels of glucose-6-phosphate, lactate, pyruvate, and uridine diphosphoglucose were more than twice those of brain; 6-phosphogluconate and citrate were about 70% higher than in brain; glucose, glycogen, glycerol-1-phosphate, and malate averages ranged from 104% to 127% of brain; and fructose-1,6-bisphosphate and glucose-1,6-bisphosphate levels were on the average 50% and 70% those of brain, respectively.  相似文献   

8.
The proportion of hexokinase that is bound to the outer mitochondrial membrane is tissue specific and metabolically regulated. This study examined the role of the N,N-dicyclohexylcarbodiimide-binding domain of mitochondrial porin in binding to hexokinase I. Selective proteolytic cleavage of porin protein was performed and peptides were assayed for their, effect on hexokinase I binding to isolated mitochondria. Specificity of DCCD-reactive domain binding to hexokinase I was demonstrated by competition of the peptides for porin binding sites on hexokinase as well as by blockage hexokinase binding by N,N-dicyclohexylcarbodiimide. One of the peptides, designated as 5 kDa (the smallest of the porin peptides, which contains a DCCD-reactive site), totally blocked binding of the enzyme to the mitochondrial membrane, and significantly enhanced the release of the mitochondrially bound enzyme. These experiments demonstrate that there exists a direct and specific interaction between the DCCD-reactive domain of VDAC and hexokinase I. The peptides were further characterized with respect to their effects on certain functional properties of hexokinase I. None had any detectable effect on catalytic properties, including inhibition by glucose 6-phosphate. To evaluate further the outer mitochondrial membranes role in the hexokinase binding, insertion of VDAC was examined using isolated rat mitochondria. Pre-incubation of mitochondria with purified porin strongly increases hexokinase I binding to rat liver mitochondria. Collectively, the results imply that the high hexokinase-binding capability of porin-enriched mitochondria was due to a quantitative difference in binding sites.  相似文献   

9.
1. The degradation rates and half-lives of hexokinase, 6-phosphogluconate dehydrogenase, lactate dehydrogenase, pyruvate kinase, glucose 6-phosphate dehydrogenase, phosphoglycerate kinase and aldolase were calculated from measurements of the decline in activities of these enzymes in rat small intestine during starvation. 2. The half-lives of the enzymes are: hexokinase, 5.7h; 6-phosphogluconate dehydrogenase, 7.6h; glucose 6-phosphate dehydrogenase, 6.0h; pyruvate kinase, 8.9h; lactate dehydrogenase, 8.7h; phosphoglycerate kinase, 8.7h; aldolase, 5.1h. 3. The significance of the results is discussed with respect to the regulation of enzyme concentrations in response to changes in diet.  相似文献   

10.
The major portion of rat brain hexokinase (HK type I) is bound to the outer membrane of mitochondria and glucose-6-phosphate (G6P) can release the bound enzyme. In an attempt to look at the hydrophobic component of binding, interaction of the enzyme with a purely hydrophobic matrix, palmityl-substituted Sepharose-4B (Sepharose-lipid) was investigated. Hexokinase readily bound to this matrix with retention of its catalytic activity. Glucose-6-phosphate which has a releasing effect on the mitochondrially bound enzyme, enhanced binding of the enzyme on the hydrophobic matrix. Chymotrypsin treatment of hexokinase which causes loss of binding to mitochondria, also results in loss of adsorption to the hydrophobic matrix, thus demonstrating that the hydrophobic tail present at its N-terminal end is essential for binding in both cases. Data presented provide some new information relevant to understanding how hexokinase interacts with its natural binding matrix, the mitochondrion.  相似文献   

11.
Previous work has indicated that two types (A and B) of binding sites for hexokinase exist, but in different proportions, on brain mitochondria from various species. Hexokinase is readily solubilized from Type A sites by glucose 6-phosphate (Glc-6-P), while hexokinase bound to Type B sites remains bound even in the presence of Glc-6-P. Type A:Type B ratios are approximately 90:10, 60:40, 40:60, and 20:80 for brain mitochondria from rat, rabbit, bovine and human brain, respectively. The present study has indicated that MgCl2-dependent partitioning of mitochondrially bound hexokinase into a hydrophobic (Triton X-114) phase is generally correlated with the proportion of Type B sites. This partitioning behavior is sensitive to phospholipase C, implying that the factor(s) responsible for conferring hydrophobic character is(are) phospholipid(s). Substantial differences were also seen in the resistance of hexokinase, bound to brain mitochondria from various species, to solubilization by Triton X-100, Triton X-114, or digitonin. This resistance increased with proportion of Type B sites. Enrichment of bovine brain mitochondria in acidic phospholipids (phosphatidylserine or phosphatidylinositol), but not phosphatidylcholine or phosphatidylethanolamine, substantially increased solubilization of the enzyme after incubation at 37 degrees C. Collectively, the results imply that the Type A and Type B sites are located in membrane domains of different lipid composition, the Type A sites being in domains enriched in acidic phospholipids which lead to greater susceptibility to solubilisation by Glc-6-P.  相似文献   

12.
1. Erythrocytes from normal and glucose 6-phosphate dehydrogenase-deficient humans were subjected to hydrogen peroxide diffusion to oxidize the GSH. Studies were carried out in the presence and absence of chromate to inhibit glutathione reductase and with or without the addition of glucose. 2. The GSH content of erythrocytes from other species was oxidized by subjecting them to hydrogen peroxide diffusion in the presence of chromate and glucose. 3. Chromate (1.3mm) inhibited glutathione reductase by about 80%, whereas glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, hexokinase, phosphofructokinase and pyruvate kinase were not inhibited. 4. The GSSG formed was transported from the erythrocytes to the medium. 5. The transport rate of GSSG from glucose 6-phosphate dehydrogenase-deficient erythrocytes subjected to hydrogen peroxide diffusion in the presence of chromate was comparable with that from normal and glucose 6-phosphate dehydrogenase-deficient erythrocytes. 6. The rate of transport of GSSG from erythrocytes of various species studied could be ranked: pigeon>rabbit>rat>donkey>man>dog>horse>sheep>chicken>fish.  相似文献   

13.
Changes in hepatic lipogenesis during development of the rat   总被引:6,自引:6,他引:0       下载免费PDF全文
1. Changes in the activities of ATP citrate lyase, ;malic' enzyme, glucose 6-phosphate dehydrogenase, pyruvate kinase and fructose 1,6-diphosphatase, and in the ability to incorporate [1-(14)C]acetate into lipid have been measured in the livers of developing rats between late foetal life and maturity. 2. In male rats the activities of those systems directly or indirectly concerned in lipogenesis (acetate incorporation into lipid, ATP citrate lyase and glucose 6-phosphate dehydrogenase) fall after birth and are maintained at a low value until weaning. After weaning these activities rise to a maximum between 30 and 40 days and then decline, reaching adult values at about 60 days. ;Malic' enzyme activity follows a similar course, except that none could be detected in the foetal liver. Pyruvate kinase activity is lower in foetal than in adult livers and rises to slightly higher than the adult value in the post-weaning period. Fructose 1,6-diphosphatase activity rises from a very low foetal value to reach a maximum at about 10 days but falls rapidly after weaning to reach adult values at about 30 days. 3. Weaning rats on to a high-fat diet caused the low activities of acetate incorporation, ATP citrate lyase, glucose 6-phosphate dehydrogenase and pyruvate kinase, characteristic of the suckling period, to persist. ;Malic' enzyme and fructose 1,6-diphosphatase activities were not altered appreciably. 4. No differences could be detected in hepatic enzyme activities between males and females up to 35 days, but after this time female rats gave higher values for acetate incorporation, glucose 6-phosphate dehydrogenase activity and ;malic' enzyme activity. 5. The results are discussed in relation to changes in alimentation and hormonal influences.  相似文献   

14.
Abstract: Key enzymes of ketone body metabolism (3-hydroxybutyrate de-hydrogenase, 3-oxo-acid: CoA transferase, acetoacetyl-CoA thiolase) and glucose metabolism (hexokinase, lactate dehydrogenase, pyruvate dehydrogenase, citrate synthase) have been measured in the brains of foetal, neonatal and adult guinea pigs and compared to those in the brains of neonatal and adult rats. The activities of the guinea pig brain ketone-body-metabolising enzymes remain relatively low in activity throughout the foetal and neonatal periods, with only slight increases occurring at birth. This contrasts with the rat brain, where three- to fourfold increases in activity occur during the suckling period (0–21 days post partum), followed by a corresponding decrease in the adult. The activities of the hexokinase (mitochondrial and cytosolic), pyruvate dehydrogenase, lactate dehydrogenase and citrate synthase of guinea pig brain show marked increases in the last 10–15 days before birth, so that at birth the guinea pig possesses activities of these enzymes similar to the adult state. This contrasts with the rat brain where these enzymes develop during the late suckling period (10–15 days after birth). The development of the enzymes of aerobic glycolytic metabolism correlate with the onset of neurological competence in the two species, the guinea pig being a "precocial" species born neurologically competent and the rat being a "non-precocial" species born neurologically immature. The results are discussed with respect to the enzymatic activities required for the energy metabolism of a fully developed, neurologically competent mammalian brain and its relative sensitivity to hypoxia.  相似文献   

15.
1. The following were measured in adipose-tissue pieces, obtained from 7–9 month-old sheep, before or after the tissue pieces had been maintained in tissue culture for 24 h: the rates of synthesis from glucose of fatty acids, acylglycerol glycerol, pyruvate and lactate; the rate of glucose oxidation to CO2; the rate of glucose oxidation via the pentose phosphate pathway; the activities of hexokinase, glucose 6-phosphate dehydrogenase, phosphofructokinase, pyruvate kinase, pyruvate dehydrogenase and ATP citrate lyase; the intra- and extra-cellular water content; the concentration of various metabolites and ATP, ADP and AMP. 2. The proportion of glucose carbon converted into the various products in sheep adipose tissue differs markedly from that observed in rat adipose tissue. 3. There was a general increase in the rate of glucose utilization by the adipose-tissue pieces after maintenance in tissue culture; largest changes were seen in the rates of glycolysis and fatty acid synthesis from glucose. These increases are paralleled by an increase in pyruvate kinase activity. There was no change in the activities of the other enzymes as measured, although the net flux through all the enzymes increased. 4. Incubation of fresh adipose-tissue pieces for 2–6h led to an increase in the affinity of pyruvate kinase for phosphoenolpyruvate. 5. The rate of pyruvate production by glycolysis was greater than the activity of pyruvate dehydrogenase of the tissue. 6. The results suggest that both pyruvate kinase and pyruvate dehydrogenase have important roles in restricting the utilization of glucose carbon for fatty acid synthesis in sheep adipose tissue.  相似文献   

16.
Summary Recent reports have revealed that certain neurons do not survive in vitro in the presence of glucose, which is the primary substrate and exclusive source of energy in the brain. But these neurons can survive in the presence of low-molecular-weight agents such as pyruvate, which are supplied by glial cells (Selak et al. 1984). To test whether this result also holds true in vivo, we investigated the distribution of hexokinase, lipoic dehydrogenase, -hydroxybutyrate dehydrogenase, and glucose-6-phosphate dehydrogenase activities in the developing rat cerebellum. Hexokinase activity was relatively higher in glial cells than in neurons. After postnatal day 8, the activity of hexokinase could hardly be detected in Purkinje cells, whereas it was highest in Bergmann glial cells. Purkinje cells were the only type of neuron with high levels of lipoic dehydrogenase at all ages tested. -Hydroxybutylate dehydrogenase activity was also high in Purkinje cells, especially in those from young rats. Relatively high glucose-6-phosphate dehydrogenase activity was demonstrated in basket and stellate cells from adult brain. Thus, it appears that, in vivo, certain neurons utilize relatively little glucose, and it is indeed possible that glial cells may supply some substance(s) other than glucose, for example pyruvate, as the primary source of energy.  相似文献   

17.
The total activity of pyruvate dehydrogenase in mitochondria isolated from rat brain and liver was 53.5 and 14.2nmol/min per mg of protein respectively. Pyruvate dehydrogenase in liver mitochondria incubated for 4 min at 37 degrees C with no additions was 30% in the active form and this activity increased with longer incubations until it was completely in the active form after 20 min. Brain mitochondrial pyruvate dehydrogenase activity was initially high and did not increase with addition of Mg2+ plus Ca2+ or partially purified pyruvate dehydrogenase phosphatase or with longer incubations. The proportion of pyruvate dehydrogenase in the active form in both brain and liver mitochondria changed inversely with changes in mitochondrial energy charge, whereas total pyruvate dehydrogenase did not change. The chelators citrate, isocitrate, EDTA, ethanedioxybis(ethylamine)tetra-acetic acid and Ruthenium Red each lowered pyruvate dehydrogenase activity in brain mitochondria, but only citrate and isocitrate did so in liver mitochondria. These chelators did not affect the energy charge of the mitochondria. Mg2+ plus Ca2+ reversed the pyruvate dehydrogenase inactivation in liver, but not brain, mitochondria. The regulation of the activation-inactivation of pyruvate dehydrogenase in mitochondria from rat brain and liver with respect to energy charge is similar and may be at least partially regulated by this parameter, and the effects of chelators differ in the two types of mitochondria.  相似文献   

18.
Different values exist for glucose metabolism in white matter; it appears higher when measured as accumulation of 2-deoxyglucose than when measured as formation of glutamate from isotopically labeled glucose, possibly because the two methods reflect glycolytic and tricarboxylic acid (TCA) cycle activities, respectively. We compared glycolytic and TCA cycle activity in rat white structures (corpus callosum, fimbria, and optic nerve) to activities in parietal cortex, which has a tight glycolytic-oxidative coupling. White structures had an uptake of [(3)H]2-deoxyglucose in vivo and activities of hexokinase, glucose-6-phosphate isomerase, and lactate dehydrogenase that were 40-50% of values in parietal cortex. In contrast, formation of aspartate from [U-(14)C]glucose in awake rats (which reflects the passage of (14)C through the whole TCA cycle) and activities of pyruvate dehydrogenase, citrate synthase, alpha-ketoglutarate dehydrogenase, and fumarase in white structures were 10-23% of cortical values, optic nerve showing the lowest values. The data suggest a higher glycolytic than oxidative metabolism in white matter, possibly leading to surplus formation of pyruvate or lactate. Phosphoglucomutase activity, which interconverts glucose-6-phosphate and glucose-1-phosphate, was similar in white structures and parietal cortex ( approximately 3 nmol/mg tissue/min), in spite of the lower glucose uptake in the former, suggesting that a larger fraction of glucose is converted into glucose-1-phosphate in white than in gray matter. However, the white matter glycogen synthase level was only 20-40% of that in cortex, suggesting that not all glucose-1-phosphate is destined for glycogen formation.  相似文献   

19.
The functional compartmentation of mitochondrial hexokinase   总被引:2,自引:0,他引:2  
These studies examined the functional relationship between rat hepatic mitochondria and associated hexokinase (ATP: d-hexose-6-phosphotransferase, 2.7.1.1) to determine whether the binding of hexokinase to mitochondria might provide a privileged interaction with sites of ATP production.Initial kinetic analysis followed the sequential flow of phosphate through ATP generated by the mitochondria into glucose-6-phosphate catalyzed by the bound hexokinase. Kinetics were compared with an identical bound hexokinase-mitochondrial system using externally supplied ATP. The hexokinase had lower apparent Km values for ATP generated in the mitochondria from supplied ADP than for ATP provided. Respiratory inhibitors blocked both the ADP- and ATP-mediated reactions. Tracer studies further documented that the mitochondrial hexokinase initially and preferentially utilized the internally generated nucleotide.These studies demonstrate that the active site of bound hexokinase is relatively inaccessible to extramitochondrial ATP. They provide evidence that bound hexokinase can sequentially accept mitochondrially generated ATP in a kinetically advantageous way. Finally, they support the assumption that mitochondrial binding of this acceptor enzyme may play a propitious role in cellular energy economy.  相似文献   

20.
Hexokinase is released from Type A sites of brain mitochondria in the presence of glucose 6-phosphate (Glc-6-P); enzyme bound to Type B sites remains bound. Hexokinase of freshly isolated bovine brain mitochondria (Type A:Type B, approximately 40:60) selectively uses intramitochondrial ATP as substrate and is relatively insensitive to the competitive (vs ATP) inhibitor and Glc-6-P analog, 1,5-anhydroglucitol 6-phosphate (1,5-AnG-6-P). After removal of hexokinase bound at Type A sites, the remaining enzyme, bound at Type B sites, does not show selectivity for intramitochondrial ATP and has increased sensitivity to 1,5-AnG-6-P. Thus, the properties of the enzyme bound at Type B sites are modified by removal of hexokinase bound at Type A sites. It is suggested that mechanisms for regulation of mitochondrial hexokinase activity, and thereby cerebral glycolytic metabolism, may depend on the ratio of Type A:Type B sites, which varies in different species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号