首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lipopeptides on the basis of L-glutamic acid and glutamine di-and monoesters with aliphatic alcohols of various lengths that contain L-arginine, L-ornithine, and L-lysine were synthesized. The behavior of these amphiphiles in aqueous medium was shown to depend on their structure.  相似文献   

2.
Long term composting induces loss of C and organic matter stabilisation. These two processes may have opposite effects on long term carbon storage in soils. To check whether raw materials should be composted or not before being spread on the soil, changes in particle size fractions were quantified during composting of 9 tons of sewage sludge and straw. Both the mass of the fine fraction (<2 microm) and the amount of carbon contained in it increased after seven months, respectively, +37% and +43%. The fine fraction contributes to carbon sequestration. A literature review supported the assumption that composting should increase long term C storage. Nevertheless, soil texture or agricultural practices modify the behaviour of this fraction. Thus, the fractionation method used for soils is relevant to predict the effect of composting as a mitigation option in greenhouse gas reduction strategies, but is not sufficient in itself.  相似文献   

3.
Sustained release depot systems have been widely investigated for their potential to improve the efficacy of subunit vaccines and reduce the requirement for boosting. The present study aimed to further enhance the immunogenicity of a sustained release vaccine by combining a depot formulation with a particulate antigen delivery system. Sustained release of the model subunit antigen, ovalbumin (OVA), was observed in vivo from chitosan thermogel-based formulations containing cationic, nanosized liposomes loaded with OVA and the immunopotentiator, Quil A (QA). Such formulations demonstrated the ability to induce cluster of differentiation (CD)8+ and CD4+ T-cell proliferation and interferon (IFN)-γ production, as well as the production of OVA-specific antibody. However, gel-incorporated liposomes showed evidence of instability and similar in vivo immune responses to liposomes in gel formulations were induced by gel-based systems loaded with soluble OVA and QA. The immunogenicity of chitosan thermogels containing cubosomes, a more stable lipidic particulate system, was therefore examined. Similarly, all gel-based formulations produced comparable effector immune responses in experimental mice, irrespective of whether the antigen and immunopotentiator were present in gels within cubosomes or in a soluble form. This work demonstrates the potential for sustained release thermogelling systems and highlights the importance of matching the physicochemical and immunological properties of the particulate system to that of the depot.  相似文献   

4.
Hydrogels (HGs) and nanogels (NGs) have been recently identified as innovative supramolecular materials for many applications in biomedical field such as in tissue engineering, optoelectronic, and local delivery of active pharmaceutical ingredients (APIs). Due to their in vivo biocompatibility, synthetic accessibility, low cost, and tunability, peptides have been used as suitable building blocks for preparation of HGs and NGs formulations. Peptide HGs have shown an outstanding potential to deliver small drugs, protein therapeutics, or diagnostic probes, maintaining the efficacy of their loaded molecules, preventing degradation phenomena, and responding to external physicochemical stimuli. In this review, we discuss the possible use of peptide-based HGs and NGs as vehicles for the delivery of the anticancer drug doxorubicin (Dox). This anthracycline is clinically used for leukemia, stomach, lung, ovarian, breast, and bladder cancer therapy. The loading of Dox into supramolecular systems (liposomes, micelles, hydrogels, and nanogels) allows reducing its cardiotoxicity. According to a primary sequence classification of the constituent peptide, doxorubicin-loaded systems are here classified in short and ultra-short peptide-based HGs, RGD, or RADA-peptide-based HGs and peptide-based NGs.  相似文献   

5.
Drug releasing systems in cardiovascular tissue engineering   总被引:1,自引:0,他引:1  
Heart disease and atherosclerosis are the leading causes of morbidity and mortality worldwide. The lack of suitable autologous grafts has produced a need for artificial grafts; however, current artificial grafts carry significant limitations, including thrombosis, infection, limited durability and the inability to grow. Tissue engineering of blood vessels, cardiovascular structures and whole organs is a promising approach for creating replacement tissues to repair congenital defects and/or diseased tissues. In an attempt to surmount the shortcomings of artificial grafts, tissue-engineered cardiovascular graft (TECVG), constructs obtained using cultured autologous vascular cells seeded onto a synthetic biodegradable polymer scaffold, have been developed. Autologous TECVGs have the potential advantages of growth, durability, resistance to infection, and freedom from problems of rejection, thrombogenicity and donor scarcity. Moreover polymers engrafted with growth factors, cytokines, drugs have been developed allowing drug-releasing systems capable of focused and localized delivery of molecules depending on the environmental requirements and the milieu in which the scaffold is placed. A broad range of applications for compound-releasing, tissue-engineered grafts have been suggested ranging from drug delivery to gene therapy. This review will describe advances in the development of drug-delivery systems for cardiovascular applications focusing on the manufacturing techniques and on the compounds delivered by these systems to date.  相似文献   

6.
BacKGROUND AND AIMS: The great potential of using nanodevices as delivery systems to specific targets in living organisms was first explored for medical uses. In plants, the same principles can be applied for a broad range of uses, in particular to tackle infections. Nanoparticles tagged to agrochemicals or other substances could reduce the damage to other plant tissues and the amount of chemicals released into the environment. To explore the benefits of applying nanotechnology to agriculture, the first stage is to work out the correct penetration and transport of the nanoparticles into plants. This research is aimed (a) to put forward a number of tools for the detection and analysis of core-shell magnetic nanoparticles introduced into plants and (b) to assess the use of such magnetic nanoparticles for their concentration in selected plant tissues by magnetic field gradients. METHODS: Cucurbita pepo plants were cultivated in vitro and treated with carbon-coated Fe nanoparticles. Different microscopy techniques were used for the detection and analysis of these magnetic nanoparticles, ranging from conventional light microscopy to confocal and electron microscopy. KEY RESULTS: Penetration and translocation of magnetic nanoparticles in whole living plants and into plant cells were determined. The magnetic character allowed nanoparticles to be positioned in the desired plant tissue by applying a magnetic field gradient there; also the graphitic shell made good visualization possible using different microscopy techniques. CONCLUSIONS: The results open a wide range of possibilities for using magnetic nanoparticles in general plant research and agronomy. The nanoparticles can be charged with different substances, introduced within the plants and, if necessary, concentrated into localized areas by using magnets. Also simple or more complex microscopical techniques can be used in localization studies.  相似文献   

7.
Effective drug delivery is one of the most important issues associated with the administration of therapeutic agents that have low oral bioavailability. Curcumin is an active ingredient in the turmeric plant, which has low oral bioavailability due to its poor aqueous solubility. One strategy that has been considered for enhancing the aqueous solubility, and, thus, its oral bioavailability, is the use of chitosan as a carrier for curcumin. Chitosan is a biodegradable and biocompatible polymer that is relatively water-soluble. Therefore, various studies have sought to improve the aqueous solubility of chitosan. The use of different pharmaceutical excipients and formulation strategies has the potential to improve aqueous solubility, formulation processing, and the overall delivery of hydrophobic drugs. This review focuses on various methods utilized for chitosan-based delivery of curcumin.  相似文献   

8.
The impact of succinylation on soy proteins as excipients for delayed delivery of drugs in the gastrointestinal tract was studied. Succinylation decreased protein solubility and protein charge density at pH 1.2 and increased solubility and zeta potential at pH above 4.5. Tablet erosion and swelling were decreased at pH 1.2 and increased at pH 7.5. FTIR analysis indicated polypeptide chain unfolding as a result of succinylation. Tablets of protein succinylated 50% or 100% released less than 10% of loaded riboflavin or rifampicin in 2 h at gastric pH in the presence of pepsin but released these compounds rapidly at intestinal pH. Succinylated soy protein tablets were thus gastroresistant, suggesting their use as excipients for controlled release of medicinal or nutraceutical agents.  相似文献   

9.
With the remarkable development of nanotechnology in recent years, new drug delivery approaches based on the state-of-the-art nanotechnology have been receiving significant attention. Nanoparticles, an evolvement of nanotechnology, are increasingly considered as a potential candidate to carry therapeutic agents safely into a targeted compartment in an organ, particular tissue or cell. These particles are colloidal structures with a diameter smaller than 1,000 nm, and therefore can penetrate through diminutive capillaries into the cell's internal machinery. This innovative delivery technique might be a promising technology to meet the current challenges in drug delivery. When loaded with a gene or drug agent, nanoparticles can become nanopills, which can effectively treat problematical diseases such as cancer. This article summarizes different types of nanoparticles drug delivery systems under investigation and their prospective therapeutic applications. Also, this article presents a closer look at the advances, current challenges, and future direction of nanoparticles drug delivery systems.  相似文献   

10.
The purpose of writing this review on floating drug delivery systems (FDDS) was to compile the recent literature with special focus on the principal mechanism of floatation to achieve gastric retention. The recent developments of FDDS including the physiological and formulation variables affecting gastric retention, approaches to design single-unit and multiple-unit floating systems, and their classification and formulation aspects are covered in detail. This review also summarizes the in vitro techniques, in vivo studies to evaluate the performance and application of floating systems, and applications of these systems. These systems are useful to several problems encountered during the development of a pharmaceutical dosage form. Published: October 19, 2005  相似文献   

11.
12.
The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.  相似文献   

13.
Aptamers, known as “chemical antibodies” are screened via a combinational technology of systematic evolution of ligands by exponential enrichment (SELEX). Due to their specific targeting ability, high binding affinity, low immunogenicity and easy modification, aptamer-functionalized systems have been extensively applied in various fields and exhibit favorable results. However, there is still a long way for them to be commercialized, and few aptamer-functionalized systems have yet successfully entered clinical and industrial use. Thus, it is necessary to overview the recent research progresses of aptamer-functionalized systems for the researchers to improve or design novel and better aptamer-functionalized systems. In this review, we first introduce the recent progresses of aptamer-functionalized systems’ applications in biosensing, targeted drug delivery, gene therapy and cancer cell imaging, followed by a discussion of the challenges faced with extensive applications of aptamer-functionalized systems and speculation of the future prospects of them.  相似文献   

14.
Sexual dimorphism in body size and leg length was investigated in a common orb-weaving spider of Ireland and northern Europe, Metellina segmentata (Clerck, 1757) (Araneae, Metidae). Univariate and multivariate analyses of sexual dimorphism revealed that a greater proportion of between sex variation (sexual dimorphism) was attributable to variation in shape than in size. Significant differences were found in the scores for males and females for the first two principal components. PCI (shape) accounted for 44.25% of the variation and PC2 (size) 13.01% of the variation. Although M. segmentata has been attributed with minimal sexual size dimorphism, females were markedly heavier, possibly a reflection of differential reproductive investment between the sexes, but males had markedly longer legs and broader prosoma. The results are discussed with regard to existing theories of natural and sexual selection, particularly those concerning sexual cannibalism and differential life history traits in males and females. Models that attempt to explain the evolution of sexual size dimorphism in spiders and of the web builders in particular, fail to account for the multivariate nature of dimorphism, especially with respect to shape.  相似文献   

15.
16.
The pharmacological therapy for gastrointestinal (GI) diseases, such as inflammatory bowel diseases, continues to present challenges in targeting efficacy. The need for maximal local drug exposure at the inflamed regions of the GI tract has led research to focus on a disease-targeted drug delivery approach. Smart nanomaterials responsive to the reactive oxygen species (ROS) concentrated in the inflamed areas, can be formulated into nanoplatforms to selectively release the active compounds, avoiding unspecific drug delivery to healthy tissues and limiting systemic absorption. Recent developments of ROS-responsive nanoplatforms include combination with other materials to obtain multi-responsive systems and modifications/derivatization to increase the interactions with biological tissues, cell uptake and targeting. This review describes the applications of ROS-responsive nanosystems for on-demand drug delivery to the GI tract.  相似文献   

17.
The rapid and direct delivery of a neuroactive endomorphin 1 derivative to the brain via nasal delivery is reported. A synthetic derivative of the native opioid peptide, endomorphin 1 bearing a lactose unit on the N-terminus of the peptide has been previously reported to exhibit antinoceceptive activity similar to morphine after both intravenous and oral administration. This compound has been administered nasally to rats and appeared in the olfactory bulb within 10 min of administration with negligible levels appearing in the circulating blood or in the rest of the brain. These results indicate that the peptide is absorbed into the brain via the olfactory epithelial pathway suggesting nasal delivery may be a viable alternative route of delivery in clinical applications.  相似文献   

18.
The present study investigated preparation of bovine and porcine erythrocyte membranes from slaughterhouse blood as bio‐derived materials for delivery of dexamethasone‐sodium phosphate (DexP). The obtained biomembranes, i.e., ghosts were characterized in vitro in terms of morphological properties, loading parameters, and release behavior. For the last two, an UHPLC/–HESI–MS/MS based analytical procedure for absolute drug identification and quantification was developed. The results revealed that loading of DexP into both type of ghosts was directly proportional to the increase of drug concentration in the incubation medium, while incubation at 37°C had statistically significant effect on loaded amount of DexP (P < 0.05). The encapsulation efficiency was about fivefold higher in porcine compared to bovine ghosts. Insight into ghosts’ surface morphology by field emission‐scanning electron microscopy and atomic force microscopy confirmed that besides inevitable effects of osmosis, DexP inclusion itself had no observable additional effect on the morphology of the ghosts carriers. DexP release profiles were dependent on erythrocyte ghost type and amount of residual hemoglobin. However, sustained DexP release was achieved and shown over 3 days from porcine ghosts and 5 days from bovine erythrocyte ghosts. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1046–1055, 2016  相似文献   

19.
Summary and Conclusions  The present work aimed to characterize transdermal drug delivery systems of pinacidil monohydrate in vivo by monitoring the effect of the TDDS on blood pressure of methyl prednisolone acetate induced hypertensive rats. The blood pressure of rats was measured using a noninvasive rat BP instrument based on cuff tail technique. A significant fall in rat BP (P<.01) was observed in treatment of hypertensive rats with all the formulations, which was maintained for 48 hours. Interformulation comparison revealed that formulation B-4 was the most effective with 37.96% reduction in BP (160.33±4.96 vs 99.44±4.46 mmHg). It was concluded that a single patch application of pinacidil TDDS (B-4) can effectively control hypertension in rats for 2 days. The system holds promise for clinical studies. Publised: January 13, 2006  相似文献   

20.
Various amounts of Ovalbumin (OVA) were encapsulated into positively and negatively charged multilamellar liposomes, with the aim to investigate the entrapment efficiency in different buffers and to study their effects on the liposome size and zeta potential. Results showed that the entrapment efficiency of OVA in anionic liposomes was the same in 10 mM Phosphate Buffer (PB) as in Phosphate-Buffered Saline (PBS; PB?+?0.15 M NaCl). Also, liposome size was approximately 1200 nm for all anionic liposomes incorporating OVA. The entrapment efficiency of OVA in cationic liposomes was highly dependent on ionic strength. The size of cationic liposomes was approximately 1200 nm in PBS, regardless of protein content, but increased with the amount of the incorporated protein in PB. Aggregation of cationic liposomes in PB was observed when the mass of the protein was 2.5 mg or greater. The zeta potential of anionic liposomes was negative and of cationic liposomes positive in the whole range of protein mass tested. These results show how different compositions of lipid and aqueous phases can be used to vary the entrapment efficiency, liposome size, and zeta potential—the factors that are of great importance for the use of liposomes as drug carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号