首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Several RNA viruses have recently been shown to hijack members of the host phosphatidylinositol (PtdIns) 4-kinase (PI4K) family of enzymes. They use PI4K to generate membranes enriched in phosphatidylinositide 4-phosphate (PtdIns4P or PI4P) lipids, which can be used as replication platforms. Viral replication machinery is assembled on these platforms as a supramolecular complex and PtdIns4P lipids regulate viral RNA synthesis. This article highlights these recent studies on the regulation of viral RNA synthesis by PtdIns4P lipids. It explores the potential mechanisms by which PtdIns4P lipids can contribute to viral replication and discusses the therapeutic potential of developing antiviral molecules that target host PI4Ks as a form of panviral therapy.  相似文献   

2.
Comparisons of serine/threonine protein kinase (PK) and type IIbeta phosphatidylinositol phosphate kinase (PIPK) structures with each other and also with other proteins reveal structural and functional similarity between the two kinases and proteins of the glutathione synthase fold (ATP-grasp). This suggests that these enzymes are evolutionarily related. The structure of PIPK, which clearly resembles both PK and ATP-grasp, provides a link between the two proteins and establishes that the C-terminal domains of PK, PIPK and ATP-grasp share the same fold. The functional implications of the proposed homology are discussed.  相似文献   

3.
Subcellular fractions isolated and purified from rat brain cerebral cortices were assayed for phosphatidylinositol (PI-), phosphatidylinositol-4-phosphate (PIP-), and diacylglycerol (DG-) kinase activities in the presence of endogenous or exogenously added lipid substrates and [γ-32P]ATP. Measurable amounts of all three kinase activities were observed in each subcellular fraction, including the cytosol. However, their subcellular profiles were uniquely distinct. In the absence of exogenous lipid substrates, PI-kinase specific activity was greatest in the microsomal and non-synaptic plasma membrane fractions (150–200 pmol/min per mg protein), whereas PIP-kinase was predominantly active in the synaptosomal fraction (136 pmol/min per mg protein). Based on percentage of total protein, total recovered PI-kinase activity was most abundant in the cytosolic, synaptosomal, microsomal and mitochondrial fractions (4–11 nmol/min). With the exception of the microsomal fraction, a similar profile was observed for PIP-kinase activity when assayed in the presence of exogenous PIP (4 nmol/20 mg protein in a final assay volume of 0.1 ml). Exogenous PIP (4 nmol/20 mg protein) inhibited PI-kinase activity in most fractions by 40–70%, while enhancing PIP-kinase activity. PI- and PIP-kinase activities were observed in the cytosolic fraction when assayed in the presence of exogenously added PI or PIP, respectively, but not in heat-inactivated membranes containing these substrates. When subcellular fractions were assayed for DG-kinase activity using heat-inactivated DG-enriched membranes as substrate, DG-kinase specific activity was predominantly present in the cytosol. However, incubation of subcellular fractions in the presence of deoxycholate resulted in a striking enhancement of DG-kinase activities in all membrane fractions. These findings demonstrate a bimodal distribution between particulate and soluble fractions of all three lipid kinases, with each exhibiting its own unique subcellular topography. The preferential expression of PIP-kinase specific activity in the synaptic membranes is suggestive of the involvement of PIP2 in synaptic function, while the expression of PI-kinase specific activity in the microsomal fraction suggests additional, yet unknown, functions for PIP in these membranes.  相似文献   

4.
Incubation of rat hepatocytes with angiotensin II (1 nM) produced a time-dependent accumulation of 1, 2-diacylglycerol and inactivation of glycogen synthase with maximum effects at 10 min. The level of diacylglycerol then gradually declined and the activity of glycogen synthase I returned to control values at 30 min. In contrast, angiotensin II caused an increase in cytosolic Ca2+ and an activation of glycogen phosphorylase which were rapid and transient, reaching maximum values in less than 2 min and then returning to control levels at 15 min. There were excellent correlations between the changes in glycogen synthase I and diacylglycerol levels and between the changes in phosphorylase alpha and cytosolic Ca2+ in these time-course studies. However, there was no correlation between the changes in diacylglycerol and phosphorylase alpha or between the changes in cytosolic Ca2+ and glycogen synthase I. Norepinephrine also caused a slow increase in diacylglycerol and inactivation of glycogen synthase, and a rapid increase in cytosolic free Ca2+ and activation of glycogen phosphorylase. Addition of an alpha1-adrenergic blocker (prazosin or phentolamine) caused rapid decreases in cytosolic free Ca2+ and phosphorylase alpha, but only slowly reversed the inactivation of synthase and accumulation of diacylglycerol. The dose-response curves for norepinephrine and prazosin on glycogen synthase were well correlated with those on diacylglycerol. It is proposed that in liver cells, Ca2+-mobilizing hormones regulate phosphorylase a through a Ca2+-dependent mechanism and inactivate glycogen synthase through the generation of diacylglycerol, at least in part. The data provide additional support for the view that protein kinase C may be important in the regulation of glycogen synthase in liver.  相似文献   

5.
The membrane-associated phospholipid biosynthetic enzyme phosphatidylinositol synthase (cytidine 5'-diphospho-1,2-diacyl-sn-glycerol:myo-inositol 3-phosphatidyltransferase, EC 2.7.8.11) was purified 1,000-fold from the microsomal fraction of Saccharomyces cerevisiae. The purification procedure included Triton X-100 solubilization of the microsomal membranes, CDPdiacylglycerol-Sepharose (Larson et al., Biochemistry 15:974-979, 1976) affinity chromatography, and chromatofocusing. The procedure resulted in the isolation of a nearly homogeneous protein preparation with an apparent minimum subunit molecular weight of 34,000, as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Phosphatidylinositol synthase was dependent on manganese and Triton X-100 for maximum activity. The pH optimum was 8.0. Thioreactive agents inhibited enzyme activity. The energy of activation was found to be 35 kcal/mol (146,540 J/mol). The enzyme was reasonably stable at temperatures of up to 60 degrees C.  相似文献   

6.
Phosphatidylinositol synthase (CDP-1,2-diacyl-sn-glycerol:myo-inositol 3-phosphatidyltransferase) is active in mammalian pancreas, where it plays a role in the resynthesis of phosphatidylinositol (PI) during agonist-stimulated inositol-phospholipid metabolism. The enzyme was found to be present in relatively high specific activity [30 nmol of PI formed min-1 (mg of protein)-1] in dog pancreas microsomal membranes, and its activity in these membranes was partially characterized. The Km for myo-inositol was 0.76 mM, and the apparent Km for cytidine(5')diphospho-1,2-diacylglycerol (CDP-diacylglycerol) was 18 microM. The apparent Ka values for activation by Mn2+ and Mg2+ were respectively 42 microM and 2.5 mM. The pH optimum was 8.5-9.0. The enzyme was solubilized in stable form and in nearly quantitative yield with 40 mM n-octyl glucopyranoside (OG), with 4-6 mg of OG/mg of microsomal protein. In the presence of solubilizing levels of OG, the enzyme exhibited less than maximal activity, but full activity was restored by dilution of the OG to below its critical micelle concentration of 20-25 mM. The presence of Mn2+ was essential for stabilization of the OG-solubilized enzyme, with half-maximal stabilization at 40 microM Mn2+. The stability of the OG-solubilized enzyme was sufficient to facilitate purification of the enzyme in the presence of this detergent, with 67% of the activity remaining after 3 days at 4 degrees C. The enzyme was partially purified by OG extraction and DEAE-cellulose chromatography, in 98% yield, to a specific activity of 290 nmol of PI formed min-1 (mg of protein)-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Purified membrane-associated phosphatidylinositol synthase (CDP diacylglycerol:myo-inositol 3-phosphatidyltransferase, EC 2.7.8.11) from Saccharomyces cerevisiae was reconstituted into unilamellar phospholipid vesicles. Reconstitution of the enzyme was performed by removing detergent from an octylglucoside/phospholipid/Triton X-100/enzyme mixed micelle mixture by Sephadex G-50 superfine column chromatography. The average diameter of the vesicles was 40 nm and chymotrypsin treatment of intact vesicles indicated that over 90% of the reconstituted enzyme had its active site facing outward. The enzymological properties and reaction mechanism of reconstituted phosphatidylinositol synthase were determined in the absence of detergent. The reconstituted enzyme was used as a model system to study the regulation of activity. Phosphatidylinositol synthase was constitutive in wild type cells grown in the presence of water-soluble phospholipid precursors as determined by enzyme activity and immunoblotting. Reconstituted enzyme was not effected by water-soluble phospholipid precursors or nucleotides. Maximum activity was found when the enzyme was reconstituted into phosphatidylcholine: phosphatidylethanolamine: phosphatidylinositol: phosphatidylserine vesicles. Phosphatidylserine stimulated reconstituted activity, suggesting that the local phospholipid environment may regulate phosphatidylinositol synthase activity.  相似文献   

8.
9.
《Cell reports》2023,42(6):112633
  1. Download : Download high-res image (189KB)
  2. Download : Download full-size image
  相似文献   

10.
Phosphatidylinositol (PtdIns) synthase in microsomal fractions derived from Tetrahymena vorax was studied to determine its activity requirements. The suitability of inositol isomers as substrates for the synthase and in headgroup exchange reactions also was investigated. Tetrahymena PtdIn synthase activity was optimum in the presence of 2 mM MgCl2 plus 2 mM MnCl2, a pH of 7.8, and a temperature of 30 degrees C. The enzyme retained approximately 80% of its activity after incubation at 70 degrees C for 10 min. PtdIns headgroup exchange activity was maximal in the presence of cytidine monophosphate. By following either the accumulation of radiolabeled reaction products or the loss of radiolabel from precursors, each of the inositol isomers tested appeared to serve as substrates for both the PtdIns synthase and PtdIns:inositol phosphatidyl transferase activities. In each case, myo-inositol and scyllo-inositol were the preferred substrates. The data suggest two routes for the formation of phosphatidyl-non-myo-inositols in Tetrahymena and the potential for the production of novel, non-myo-inositol-containing second messengers.  相似文献   

11.
Lipid metabolism in Trypanosoma brucei, the causative agent of African sleeping sickness, differs from its human host in several fundamental ways. This has lead to the validation of a plethora of novel drug targets, giving hope of novel chemical intervention against this neglected disease. Cytidine diphosphate diacylglycerol (CDP‐DAG) is a central lipid intermediate for several pathways in both prokaryotes and eukaryotes, being produced by CDP‐DAG synthase (CDS). However, nothing is known about the single T. brucei CDS gene (Tb927.7.220/EC 2.7.7.41) or its activity. In this study we show TbCDS is functional by complementation of a non‐viable yeast CDS null strain and that it is essential in the bloodstream form of the parasite via a conditional knockout. The TbCDS conditional knockout showed morphological changes including a cell‐cycle arrest due in part to kinetoplast segregation defects. Biochemical phenotyping of TbCDS conditional knockout showed drastically altered lipid metabolism where reducing levels of phosphatidylinositol detrimentally impacted on glycoylphosphatidylinositol biosynthesis. These studies also suggest that phosphatidylglycerol synthesized via the phosphatidylglycerol‐phosphate synthase is not synthesized from CDP‐DAG, as was previously thought. TbCDS was shown to localized the ER and Golgi, probably to provide CDP‐DAG for the phosphatidylinositol synthases.  相似文献   

12.
13.
14.
Microsomes isolated from Tetrahymena pyriformis synthesized phosphatidylcholine and phosphatidylethanolamine by CDPcholine: 1,2-diacylglycerol cholinephosphotransferase (EC 2.7.8.2) and CDPethanolamine: 1,2-diacylglycerol ethanolaminephosphotransferase (EC 2.7.8.1), utilizing ethanol-dispersed dioleoglycerol. Cholinephosphotransferase and ethanolaminephosphotransferase activities have similar dependences on MgCl2 and MnCl2, but the latter was more effective than the former for both enzyme activities. The V values for 1,2-dioleoylglycerol obtained at optimal conditions were 1.8 nmol/min per mg microsomal protein for cholinephosphotransferase and 0.6 nmol/min per mg microsomal protein for ethanolaminephosphotransferase. Both enzymes could not utilize 1,3-dioleoylglycerol or 1-oleoylglycerol as substrates. Cholinephosphotransferase had an apparent Km for CDPcholine of 11.7 microM with 1,2-dioleoylglycerol and was inhibited by CDPethanolamine competitively. On the other hand, ethanolaminephosphotransferase has an apparent Km for CDPethanolamine of 8 microM and CDPcholine was a noncompetitive inhibitor of ethanolaminephosphotransferase activity. Furthermore, despite the marked alteration of phospholipid composition occurring during the temperature acclimation of Tetrahymena cells, both enzyme activities showed similar dependences on growth and incubation temperatures. This may imply that the final step of de novo synthesis of two major phospholipids does not participate in the thermally induced modification of the profile of phospholipid polar head group in membranes.  相似文献   

15.
16.
In order to study some of its enzymatic properties, phosphatidylinositol synthase 1 (AtPIS1) from the plant Arabidopsis thaliana was expressed in Escherichia coli, a host naturally devoid of phosphatidylinositol (PtdIns). In the context of the bacterial membrane and in addition to de novo synthesis, the plant enzyme is capable of catalysing the exchange of the inositol polar head for another inositol. Our data clearly show that the CDP-diacylglycerol-independent exchange reaction can occur using endogenous PtdIns molecular species or PtdIns molecular species from soybean added exogenously. Exchange has been observed in the absence of cytidine monophosphate (CMP), but is greatly enhanced in the presence of 4 microm CMP. Our data also show that AtPIS1 catalyses the removal of the polar head in the presence of much higher concentrations of CMP, in a manner that suggests a reverse of synthesis. All of the PtdIns metabolizing activities require free manganese ions. EDTA, in the presence of low Mn2+ concentrations, also has an enhancing effect.  相似文献   

17.
Inducible nitric oxide synthase (iNOS) is known to produce nitric oxide (NO), which is a main contributor to asthmatic airway inflammation. Recent studies have shown that phosphatidylinositol 3-kinase (PI3K) is ubiquitously expressed in airway epithelial cells and its inhibition could relieve airway inflammation and hyperresponsiveness. This study aimed to explore the interaction of PI3K and NO signaling in allergic asthma. We investigated the effects of PI3K inhibitor wortmannin on iNOS expression in bronchiole epithelial cells and NO, IL-4 and IFN-γ levels in lung tissues of asthmatic rat model, which was prepared by 10% OVA solution sensitization and 1% OVA aerosol challenge. Our results showed that the ratio of eosinophils to total cells in BALF, PI3K activity, NO and IL-4 levels in lung tissues was increased after OVA sensitization and challenge, but then was attenuated by the administration of wortmannin. In contrast, IFN-γ level in lung tissues was decreased after OVA sensitization and challenge and increased after the administration of wortmannin. The expression of iNOS protein in bronchiole epithelial cells, iNOS mRNA level and iNOS activity in lung tissues was markedly upregulated after OVA sensitization and challenge, but the upregulation was significantly antagonized by wortmannin. Taken together, these data provide evidence that PI3K functions upstream to modulate iNOS/NO signaling, which then promotes the development of airway inflammation in asthmatic animal model. PI3K inhibitor wortmannin could lead to reduced iNOS expression and NO production, therefore inhibiting airway inflammatory responses.  相似文献   

18.
Cytidinediphosphate diacylglycerol synthase (CDS) uses phosphatidic acid (PA) and cytidinetriphosphate to produce cytidinediphosphate‐diacylglycerol, an intermediate for phosphatidylglycerol (PG) and phosphatidylinositol (PI) synthesis. This study shows that CDS5, one of the five CDSs of the Oryza sativa (rice) genome, has multifaceted effects on plant growth and stress responses. The loss of CDS5 resulted in a decrease in PG and PI levels, defective thylakoid membranes, pale leaves in seedlings and growth retardation. In addition, the loss of CDS5 led to an elevated PA level and enhanced hyperosmotic tolerance. The inhibition of phospholipase D (PLD)‐derived PA formation in cds5 restored the hyperosmotic stress tolerance of the mutant phenotype to that of the wild type, suggesting that CDS5 functions as a suppressor in PLD‐derived PA signaling and negatively affects hyperosmotic stress tolerance.  相似文献   

19.
20.
To test the responsiveness of living cells to the intracellular messenger diacylglycerol, we developed a prototype caged diacylglycerol compound, 3-O-(alpha-carboxyl-2,4-dinitrobenzyl)-1 ,2-dioctanoyl-rac-glycerol (designated alpha-carboxyl caged diC(8)), that produces dioctanoylglycerol (diC(8)) on photolysis. Alpha-Carboxyl caged diC(8) is biologically inert toward diacylglycerol kinase and protein kinase C in vitro and is readily incorporated into cardiac myocyte membranes, where it has no effect before irradiation. Exposure to near-UV light releases biologically active diC8 in good yield (quantum efficiency = 0.2). Here we examine a cellular response to controlled elevation of diC8 within single cardiac myocytes. Twitch amplitude was monitored in electrically stimulated myocytes, and a ramp increase in the concentration of diC(8) was generated by continuous irradiation of cells loaded with the caged compound. The myocyte response was biphasic with a positive inotropic phase (39% increase in twitch amplitude), followed by a large negative inotropic phase (>80% decrease). The time to peak inotropy for both phases depended on the light intensity, decreasing from 376 +/- 51 S to 44 +/- 5 s (positive phase) and 422 +/- 118 S to 51 +/- 9 S (negative phase) as the light intensity was increased eightfold. Both phases were inhibited by the protein kinase C inhibitor chelethyrine chloride. An increase in extracellular K+ from 5 mM to 20 mM to partially depolarize the cell membrane eliminated the positive inotropic phase, but the negative inotropic response was largely unaltered. The results reveal new features in the response of cardiac muscle to diacylglycerol, including a positive inotropic phase and a complex responsiveness to a simple linear increase in diacylglycerol. The effects of photoreleased diC(8) were similar to the effects of opiate agonists selective for kappa receptors, consistent with a major role for diacylglycerol in these responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号