首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanism of poly(ethylene glycol) interaction with proteins   总被引:10,自引:0,他引:10  
T Arakawa  S N Timasheff 《Biochemistry》1985,24(24):6756-6762
Poly(ethylene glycol) (PEG) is one of the most useful protein salting-out agents. In this study, it has been shown that the salting-out effectiveness of PEG can be explained by the large unfavorable free energy of its interaction with proteins. Preferential interaction measurements of beta-lactoglobulin with poly(ethylene glycols) with molecular weights between 200 and 1000 showed preferential hydration of the protein for those with Mr greater than or equal to 400, the degree of hydration increasing with the increase in poly(ethylene glycol) molecular weight. The preferential interaction parameter had a strong cosolvent concentration dependence, with poly(ethylene glycol) 1000 having the sharpest decrease with an increase in concentration. The preferential hydration extrapolated to zero cosolvent concentration increased almost linearly with increasing size of the additive, suggesting steric exclusion as the major factor responsible for the preferential hydration. The poly(ethylene glycol) concentration dependence of the preferential interactions could be explained in terms of the nonideality of poly(ethylene glycol) solutions. All the poly(ethylene glycols) studied, when used at levels of 10-30%, decreased the thermal stability of beta-lactoglobulin, suggesting that caution must be exercised in the use of this additive at extreme conditions such as high temperature.  相似文献   

2.
研究蒸汽爆破预处理对沙柳原料酶解效果的影响,通过响应曲面实验设计法优化蒸汽爆破处理沙柳原料的酶解工艺。结果表明,蒸汽爆破预处理沙柳原料的最佳蒸汽爆破处理条件:压力3.5 MPa、维压时间300 s; 蒸汽爆破最佳酶解条件:pH 4.8、温度53.5 ℃、 每克底物酶加量29.8 FPU。在最优条件下,蒸汽爆破处理沙柳原料的酶解率可以达到最大值87.92%,并验证了数学模型的有效性,试验结果表明蒸汽爆破预处理可以有效提高沙柳原料的水解率。  相似文献   

3.
Summary The use of low-pressure steam autohydrolysis in the pretreatment of corn stover and hybrid poplar has been assessed. In terms of yield of prehydrolyzed solids, minimal by-product formation and extent of subsequent enzymatic saccharification, the results of low-pressure steam pretreatment were found to be as good as or better than those reported for more severe pretreatment processes. Almost complete saccharification of the cellulose in the prehydrolyzed biomass solids was obtained within 24h with a commercial cellulase preparation — Celluclast. The presence of grinding elements (glass beads) during the enzymatic hydrolysis was found to increase the extent of saccharification by 40% to 50% over controls without any grinding elements.  相似文献   

4.
Douglas-fir was SO2-steam pretreated at different severities (190, 200, and 210 °C) to assess the possible negative effect of the residual and isolated lignins on the enzymatic hydrolysis of the steam pretreated substrates. When various isolated lignins were added to the Avicel hydrolysis reactions, the decrease in glucose yields ranged from 15.2% to 29.0% after 72 h. It was apparent that the better hydrolysis yields obtained at higher pretreatment severities were more a result of the greater accessibly of the cellulose rather than any specific change in the non-productive binding of the lignin to the enzymes. FTIR and 13C NMR characterization indicated that the lignin in the steam pretreated substrates became more condensed with increasing severity, suggesting that the cellulases were adsorbed to the lignin by hydrophobic interactions. Electrostatic interactions were also involved as the positively charged cellulase components were preferentially adsorbed to the lignins.  相似文献   

5.
Ethanol can be produced from lignocellulosic biomass using steam pretreatment followed by enzymatic hydrolysis and fermentation. The sugar yields, from both hemicellulose and cellulose are critical parameters for an economically-feasible ethanol production process. This study shows that a near-theoretical glucose yield (96-104%) from acid-catalysed steam pretreated corn stover can be obtained if xylanases are used to supplement cellulases during hydrolysis. Xylanases hydrolyse residual hemicellulose, thereby improving the access of enzymes to cellulose. Under these conditions, xylose yields reached 70-74%. When pre-treatment severity was reduced by using autocatalysis instead of acid-catalysed steam pretreatment, xylose yields were increased to 80-86%. Partial delignification of pretreated material was also evaluated as a way to increase the overall sugar yield. The overall glucose yield increased slightly due to delignification but the overall xylose yield decreased due to hemicellulose loss in the delignification step. The data also demonstrate that steam pretreatment is a robust process: corn stover from Europe and North America showed only minor differences in behaviour.  相似文献   

6.
This protocol describes the synthesis of oligo(poly(ethylene glycol) fumarate) (OPF; 1-35 kDa; a polymer useful for tissue engineering applications) by a one-pot reaction of poly(ethylene glycol) (PEG) and fumaryl chloride. The procedure involves three parts: dichloromethane and PEG are first dried; the reaction step follows, in which fumaryl chloride and triethylamine are added dropwise to a solution of PEG in dichloromethane; and finally, the product solution is filtered to remove by-product salt, and the OPF product is twice crystallized, washed and dried under vacuum. The reaction is affected by the molecular weight of PEG and reactant molar ratio. The OPF product is cross-linked by radical polymerization by either a thermally induced or ultraviolet-induced radical initiator, and the physical properties of the OPF oligomer and resulting cross-linked hydrogel are easily tailored by varying PEG molecular weight. OPF hydrogels are injectable, they polymerize in situ and they undergo biodegradation by hydrolysis of ester bonds. The expected time required to complete this protocol is 6 d.  相似文献   

7.
The synthesis of novel hybrid hydrogels by stepwise copolymerization of multiarm vinyl sulfone-terminated poly(ethylene glycol) macromers and alpha-omega cysteine oligopeptides via Michael-type additions is described. Cross-linking kinetics, studied by in situ rheometry, can be controlled by pH and the presence of charged amino acid residues in close proximity to the Cys, which modulates the pK(a) of the thiol group. These end-linked networks were characterized by their equilibrium swelling in water, by their viscoelastic properties in the swollen state, and by their soluble fraction. It was demonstrated that structure and properties are very sensitive to the preparation state including stoichiometry and precursor concentration and less sensitive to the pH during cross-linking. For each network the concentration of elastically active chains (nu) was calculated from experimentally determined sol fractions using Miller-Macosko theory and compared to values obtained from swelling and rheometry studies and by calculation from Flory's classical network models. Hydrogels were also prepared with varying macromer structures, and their properties were shown to respond to both macromer functionality and molecular weight.  相似文献   

8.
Here we describe the fabrication and preservation of mammalian cell-containing hydrogel microarrays that have potential applications in drug screening and pathogen detection. Hydrogel microstructures containing murine fibroblasts were fabricated on silicon substrates and subjected to a "stage-down" freezing process. The percent viability of both immortal and primary embryonic murine fibroblast cells within the gels was determined at various stages in the freezing process, showing that cells entrapped in hydrogel microstructures remained viable throughout the process. When compared to immortalized adherent cultures subjected to the same freezing process, cells within hydrogel structures had higher cell viabilities at all stages during preservation. Finally, the necessity of using a cryoprotectant, dimethyl sulfoxide (DMSO), was investigated. Cells in hydrogels were cryopreserved with and without DMSO. The addition of DMSO altered cell viability after the freeze-thaw process, enhancing viability in an immortalized cell line and decreasing viability in a primary cell line.  相似文献   

9.
Covalently grafting proteins with varying numbers (n) of poly(ethylene glycol) molecules (PEGs) often enhances their biomedical and industrial usefulness. Partition between the phases in aqueous polymer two-phase systems can be used to rapidly characterize polymer-protein conjugates in a manner related to various enhancements. The logarithm of the partition coefficient (K) approximates linearity over the range 0<n<x. However, x varies with the nature of the conjugate (e.g., protein molecular mass) and such data analysis does not facilitate the comparison of varied conjugates. The known behavior of surface localized PEGs suggests a better correlation should exist between log K and the weight fraction of polymer in PEG-protein conjugates. Data from four independent studies involving three proteins (granulocyte-macrophage colony stimulation factor, bovine serum albumin and immunoglobulin G) has been found to support this hypothesis. Although somewhat simplistic, ‘weight fraction’ based analysis of partition data appears robust enough to accommodate laboratory to laboratory variation in protein, polymer and phase system type. It also facilitates comparisons between partition data involving disparate polymer-protein conjugates.  相似文献   

10.
Jain A  Ashbaugh HS 《Biomacromolecules》2011,12(7):2729-2734
Hybrid polymer-peptide conjugates offer the potential for incorporating biological function into synthetic materials. The secondary structure of short helical peptides, however, frequently becomes less stable when expressed independent of longer protein sequences or covalently linked with a conformationally disordered synthetic polymer. Recently, new amphipathic peptide-poly(ethylene glycol) conjugates were introduced (Shu, J., et al. Biomacromolecules 2008, 9, 2011), which displayed enhanced peptide helicity upon polymer functionalization while retaining tertiary coiled-coil associations. We report here a molecular simulation study of peptide helix stabilization by conjugation with poly(ethylene glycol). The polymer oxygens are shown to favorably interact with the cationic lysine side chains, providing an alternate binding site that protects against disruption of the peptide hydrogen-bonds that stabilize the helical conformation. When the peptide lysine charges are neutralized or poly(ethylene glycol) is conjugated with polyalanine, the polymer exhibits a negligible effect on the secondary structure. We also observe the interactions of poly(ethylene glycol) with the amphipathic peptide lysines tends to segregate the polymer away from the nonpolar face of the helix, suggesting no disruption of the interactions that drive tertiary contacts between helicies.  相似文献   

11.
Summary Novel surfactant-coated enzymes immobilized in poly(ethylene glycol) microcapsules have been developed for the re-use of an oil-soluble enzyme in organic media. The esterification rate of the surfactant-coated lipase immobilized in the microcapsules was thirty times that of the powder lipase. More than 90% of the enzymatic activity of the capsulated lipases has been maintained after recycling six times.  相似文献   

12.
Neutral water-soluble poly(ethylene glycol)s (PEGs) have been extensively explored in protein nanopore research for the past several decades. The principal use of PEGs is to investigate the membrane protein ion channel physical characteristics and transport properties. In addition, protein nanopores are used to study polymer–protein interactions and polymer physicochemical properties. In this review, we focus on the biophysical studies on probing protein ion channels with PEGs, specifically on nanopore sizing by PEG partitioning. We discuss the fluctuation analysis of ion channel currents in response to the PEGs moving within their confined geometries. The advantages, limitations, and recent developments of the approach are also addressed.  相似文献   

13.
True partitioning behaviour, which is independent of the protein concentration in aqueous two-phase systems, only occurs at relatively low protein concentration. The actual concentration limit depends on the properties of the protein. When the concentration of a protein exceeds relatively low values, precipitation at the interface can be observed. This protein precipitate is in equilibrium with the protein solubilized in each of the phases. This paper discusses the effect of protein solubility in view of the equilibrium of the protein concentration between the aqueous poly(ethylene glycol) and salt phases and the solid protein phase using three proteins. It was found that only rarely will the proteins be completely in solution as the concentration is increased until a solubility limit is reached and then the protein precipitates fully out of solution. A behaviour that came close to this was only seen in one case out of six. In virtually all cases, a third phase is formed which represents a solid aggregate phase which is in equilibrium with the other two, largely aqueous, phases. As the overall concentration of protein in the system is increased and the concentration in the top and bottom aqueous phases increases, the pseudo concentration in the solid-phase, Cs, also increases. This could have interesting implications in terms of the amount of water associated with this phase and it certainly means that in this particular case, the solid phase is not a crystal.  相似文献   

14.
Abstract

Candida antarctica lipase catalyzes a number of elementary reactions like alcoholysis, ammoniolysis and aminolysis in poly(ethylene glycol) (PEG) media. Reaction rates were comparable to or better than those observed in conventional organic reaction media and ionic liquids. It is envisaged that PEGs could have added benefits for performing biotransformations with highly polar substrates, which are sparingly soluble in common organic solvents.  相似文献   

15.
A versatile method to fabricate polymeric matrixes for microarray applications is demonstrated. Several different design strategies are presented where a variety of organic films, such as plastic polymers and self-assembled monolayers (SAMs) on planar silica and gold substrates, act as supports for the graft polymerization procedure. An ensemble of poly(ethylene glycol) methacrylate monomers are combined to obtain a matrix with desired properties: low nonspecific binding and easily accessible groups for postimmobilization of ligands. The free radical graft polymerization process occurs under irradiation with UV light in the 254-266 nm range, which offers the possibility to introduce patterns by means of a photomask. The arrays are created on inert and homogeneous coatings prepared either by graft polymerization of a methoxy-terminated PEG-methacrylate or self-assembly of a methoxy-terminated oligo(ethylene glycol) thiol. Carboxylic acid groups, introduced in the array spots either during graft polymerization or upon wet chemical conversion of hydroxyls, grant the capability to immobilize proteins and other molecules via free amine groups. Immobilization of fluorescent species as well as biotin followed by exposure to a fluorescently labeled antibody directed toward biotin display both excellent integrity of the spots and low nonspecific binding to the surrounding framework. Beside patterns of uniform height and size, an array of spots with varying thickness (a sort of gradient) is demonstrated. Such gradient samples enable us to address critical issues regarding the mechanism(s) behind spatially resolved free radical polymerization of methacrylates. It also offers a convenient route to optimize the matrix properties with respect to thickness, loading capacity, protein diffusion/penetration, and nonspecific binding.  相似文献   

16.
17.
以稀酸蒸爆的玉米秸秆为研究对象,考察直接水洗、Ca(OH)2、NaOH、氨水中和物料至pH 5,在固液比1∶10、酶添加量为每克纤维素14 U(滤纸酶活)的酶解条件下对纤维素转化率的影响。结果表明:水洗、Ca(OH)2、NaOH、氨水中和物料酶解72 h后,纤维素转化率分别为91.7%、80.7%、83.1%及81.7%。同时对影响纤维素酶解效率的各种因素进行了探讨。从综合成本及后续发酵过程考虑,用氨水中和稀酸蒸爆物料更适合于工业化生产。  相似文献   

18.
Kinetic modeling of the enzymatic hydrolysis of pretreated cellulose   总被引:3,自引:0,他引:3  
The production of sugars by the enzymatic hydrolysis of cellulose is a two-step process that includes conversion of the intermediate cellobiose to glucose by beta-glucosidase. The hydrolysis was followed by analyzing the two sugar products (cellobiose and glucose). The enzyme showed maximum activity at pH 4.8. Thermal deactivation was significant at temperatures above 45 degrees C. At 50 degrees C (optimum temperature) thermal deactivation was found to follow first-order kinetics. Several models were tested by modeling the kinetics of the reaction. Their parameter values were determined by numerical optimization, including temperature dependence. The best fitting model was a competitive product inhibition for the two reactions in the operational range.  相似文献   

19.
The critical micelle concentrations of 1, 2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[monomethoxy poly(ethylene glycol) (5000)] (PEG-DPPE) and its distearoyl analogue (PEG-DSPE) were 70 and 9 microM, respectively, in buffer solutions ([Tris] = 20 mM, [NaCl] = 140 mM, pH 7.4) at 37 degrees C. When these PEG-lipid micelle dispersions were mixed with the dispersions of phospholipid vesicles comprised of a C16 membrane, of which the carbon number is 16, or a C18 membrane, the PEG-lipid micelles were dissociated into monomers and then spontaneously incorporated into the surface of the preformed vesicles. The incorporation rates and the enthalpy changes during incorporation were measured with an isothermal titration microcalorimeter. The incorporation rate of PEG-DPPE was faster than that of PEG-DSPE, because the dissociation rate of the PEG-DPPE micelles was faster than that of PEG-DSPE micelles. The incorporation equilibrium constant of PEG-DSPE was larger than that of PEG-DPPE due to its slow dissociation rate from the membrane, caused by the stronger hydrophobic interaction. The combination of PEG-DSPE and the C18 membrane was the most thermodynamically stabilized pair. Furthermore, the dispersion stability of the surface-modified vesicles prepared by this spontaneous incorporation was analyzed by using the critical molecular weight of the polymer for the aggregation of vesicles. The aggregation of the vesicles was successfully supressed with an increase in the molecular weight of the PEG in the PEG-lipid and its incorporation ratio.  相似文献   

20.
Synthesis and characterization of poly(ethylene glycol)-insulin conjugates   总被引:8,自引:0,他引:8  
Human insulin was modified by covalent attachment of short-chain (750 and 2000 Da) methoxypoly (ethylene glycol) (mPEG) to the amino groups of either residue PheB1 or LysB29, resulting in four distinct conjugates: mPEG(750)-PheB1-insulin, mPEG(2000)-PheB1-insulin, mPEG(750)-LysB29-insulin, and mPEG(2000)-LysB29-insulin. Characterization of the conjugates by MALDI-TOF mass spectrometry and N-terminal protein sequence analyses verified that only a single polymer chain (750 or 2000 Da) was attached to the selected residue of interest (PheB1 or LysB29). Equilibrium sedimentation experiments were performed using analytical ultracentrifugation to quantitatively determine the association state(s) of insulin derivatives. In the concentration range studied, all four of the conjugates and Zn-free insulin exist as stable dimers while Zn(2+)-insulin was exclusively hexameric and Lispro was monomeric. In addition, insulin (conjugate) self-association was evaluated by circular dichroism in the near-ultraviolet wavelength range (320-250 nm). This independent method qualitatively suggests that mPEG-insulin conjugates behave similarly to Zn-free insulin in the concentration range studied and complements results from ultracentrifugation studies. The physical stability/resistance to fibrillation of mPEG-insulin conjugates in aqueous solution were assessed. The data proves that mPEG(750 and 2000)-PheB1-insulin conjugates are substantially more stable than controls but the mPEG(750 and 2000)-LysB29-insulin conjugates were only slightly more stable than commercially available preparations. Circular dichroism studies done in the far ultraviolet region confirm insulin's tertiary structure in aqueous solution is essentially conserved after mPEG conjugation. In vivo pharmacodynamic assays reveal that there is no loss in biological activity after conjugation of mPEG(750) to either position on the insulin B-chain. However, attachment of mPEG(2000) decreased the bioactivity of the conjugates to about 85% of Lilly's HumulinR formulation. The characterization presented in this paper provides strong testimony to the fact that attachment of mPEG to specific amino acid residues of insulin's B-chain improves the conjugates' physical stability without appreciable perturbations to its tertiary structure, self-association behavior, or in vivo biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号