首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee YR  Liu B 《Current biology : CB》2000,10(13):797-800
The phragmoplast executes cytokinesis in higher plants. The major components of the phragmoplast are microtubules, which are arranged in two mirror-image arrays perpendicular to the division plane [1]. The plus ends of these microtubules are located near the site of the future cell plate. Golgi-derived vesicles are transported along microtubules towards the plus ends to deliver materials bound for the cell plate [2] [3]. During cell division, rapid microtubule reorganization in the phragmoplast requires the orchestrated activities of microtubule motor proteins such as kinesins. We isolated an Arabidopsis cDNA clone of a gene encoding an amino-terminal motor kinesin, AtPAKRP1, and have determined the partial sequence of its rice homolog. Immunofluorescence experiments with two sets of specific antibodies revealed consistent localization of AtPAKRP1 and its homolog in Arabidopsis and rice cells undergoing anaphase, telophase and cytokinesis. AtPAKRP1 started to accumulate along microtubules towards the spindle midzone during late anaphase. Once the phragmoplast microtubule array was established, AtPAKRP1 conspicuously localized to microtubules near the future cell plate. Our results provide evidence that AtPAKRP1 is a hitherto unknown motor that may take part in the establishment and/or maintenance of the phragmoplast microtubule array.  相似文献   

2.
At anaphase, the mitotic spindle positions the cytokinesis furrow [1]. Two populations of spindle microtubules are implicated in cytokinesis: radial microtubule arrays called asters and bundled nonkinetochore microtubules called the spindle midzone [2-4]. In C. elegans embryos, these two populations of microtubules provide two consecutive signals that position the cytokinesis furrow: The first signal is positioned midway between the microtubule asters; the second signal is positioned over the spindle midzone [5]. Evidence for two cytokinesis signals came from the identification of molecules that block midzone-positioned cytokinesis [5-7]. However, no molecules that are only required for, and thus define, the molecular pathway of aster-positioned cytokinesis have been identified. With RNAi screening, we identify LET-99 and the heterotrimeric G proteins GOA-1/GPA-16 and their regulator GPR-1/2 [10-12] in aster-positioned cytokinesis. By using mechanical spindle displacement, we show that the anaphase spindle positions cortical LET-99, at the site of the presumptive cytokinesis furrow. LET-99 enrichment at the furrow depends on the G proteins. GPR-1 is locally reduced at the site of cytokinesis-furrow formation by LET-99, which prevents accumulation of GPR-1 at this site. We conclude that LET-99 and the G proteins define a molecular pathway required for aster-positioned cytokinesis.  相似文献   

3.
Partitioning of the cytoplasm during cytokinesis or cellularisation requires syntaxin-mediated membrane fusion [1-3]. Whereas in animals, membrane fusion promotes ingression of a cleavage furrow from the plasma membrane [4,5], somatic cells of higher plants form de novo a transient membrane compartment, the cell plate, which is initiated in the centre of the division plane and matures into a new cell wall and its flanking plasma membranes [6,7]. Cell plate formation results from the fusion of Golgi-derived vesicles delivered by a dynamic cytoskeletal array, the phragmoplast. Mutations in two Arabidopsis genes, KNOLLE (KN) and KEULE (KEU), cause abnormal seedlings with multinucleate cells and incomplete cell walls [1,8]. The KN gene encodes a cytokinesis-specific syntaxin which localises to the cell plate [9]. Here, we show that KN protein localisation is unaffected in keu mutant cells, which, like kn, display phragmoplast microtubules and accumulate ADL1 protein in the plane of cell division but vesicles fail to fuse with one another. Genetic interactions between KN and KEU were analysed in double mutant embryos. Whereas the haploid gametophytes gave rise to functional gametes, the embryos behaved like single cells displaying multiple, synchronously cycling nuclei, cell cycle-dependent microtubule arrays and ADL1 accumulation between pairs of daughter nuclei. This complete inhibition of cytokinesis from fertilisation indicates that KN and KEU, have partially redundant functions and interact specifically in vesicle fusion during cytokinesis of somatic cells.  相似文献   

4.
The cytokinesis phase, or C phase, of the cell cycle results in the separation of one cell into two daughter cells after the completion of mitosis. Although it is known that microtubules are required for proper positioning of the cytokinetic furrow [1] [2], the role of pre-anaphase microtubules in cytokinesis has not been clearly defined for three key reasons. First, inducing microtubule depolymerization or stabilization before the onset of anaphase blocks entry into anaphase and cytokinesis via the spindle checkpoint [3]. Second, microtubule organization changes rapidly at anaphase onset as the mitotic kinase, Cdc2-cyclin B, is inactivated [4]. Third, the time between the onset of anaphase and the initiation of cytokinesis is very short, making it difficult to unambiguously alter microtubule polymer levels before cytokinesis, but after inactivation of the spindle checkpoint. Here, we have taken advantage of the discovery that microinjection of antibodies to the spindle checkpoint protein Mad2 (mitotic arrest deficient) in prometaphase abrogates the spindle checkpoint, producing premature chromosome separation, segregation, and normal cytokinesis [5] [6]. To test the role of pre-anaphase microtubules in cytokinesis, microtubules were disassembled in prophase and prometaphase cells, the cells were then injected with anti-Mad2 antibodies and recorded through C phase. The results show that exit from mitosis in the absence of microtubules triggered a 50 minute period of cortical contractility that was independent of microtubules. Furthermore, upon microtubule reassembly during this contractile C-phase period, approximately 30% of the cells underwent chromosome poleward movement, formed a midzone microtubule complex, and completed cytokinesis.  相似文献   

5.
Cytokinesis is an event common to all organisms that involves the precise coordination of independent pathways involved in cell-cycle regulation and microtubule, membrane, actin and organelle dynamics. In animal cells, the spindle midzone/midbody with associated endo-membrane system are required for late cytokinesis events, including furrow ingression and scission. In plants, cytokinesis is mediated by the phragmoplast, an array of microtubules, actin filaments and associated molecules that act as a framework for the future cell wall. In this article (which is part of the Cytokinesis series), we discuss recent studies that highlight the increasing number of similarities in the components and function of the spindle midzone/midbody in animals and the phragmoplast in plants, suggesting that they might be analogous structures.  相似文献   

6.
Lee YR  Li Y  Liu B 《The Plant cell》2007,19(8):2595-2605
In plant cells, cytokinesis is brought about by the phragmoplast. The phragmoplast has a dynamic microtubule array of two mirrored sets of microtubules, which are aligned perpendicularly to the division plane with their plus ends located at the division site. It is not well understood how the phragmoplast microtubule array is organized. In Arabidopsis thaliana, two homologous microtubule motor kinesins, PAKRP1/Kinesin-12A and PAKRP1L/Kinesin-12B, localize exclusively at the juxtaposing plus ends of the antiparallel microtubules in the middle region of the phragmoplast. When either kinesin was knocked out by T-DNA insertions, mutant plants did not show a noticeable defect. However, in the absence of both kinesins, postmeiotic development of the male gametophyte was severely inhibited. In dividing microspores of the double mutant, microtubules often became disorganized following chromatid segregation and failed to form an antiparallel microtubule array between reforming nuclei. Consequently, the first postmeiotic cytokinesis was abolished without the formation of a cell plate, which led to failures in the birth of the generative cell and, subsequently, the sperm. Thus, our results indicate that Kinesin-12A and Kinesin-12B jointly play a critical role in the organization of phragmoplast microtubules during cytokinesis in the microspore that is essential for cell plate formation. Furthermore, we conclude that Kinesin-12 members serve as dynamic linkers of the plus ends of antiparallel microtubules in the phragmoplast.  相似文献   

7.
Plant cytokinesis starts in the center of the division plane, with vesicle fusion generating a new membrane compartment, the cell plate, that subsequently expands laterally by continuous fusion of newly arriving vesicles to its margin. Targeted delivery of vesicles is assisted by the dynamic reorganization of a plant-specific cytoskeletal array, the phragmoplast, from a solid cylinder into an expanding ring-shaped structure. This lateral translocation is brought about by depolymerization of microtubules in the center, giving way to the expanding cell plate, and polymerization of microtubules along the edge. Whereas several components are known to mediate cytokinetic vesicle fusion [8-10], no gene function involved in phragmoplast dynamics has been identified by mutation. Mutations in the Arabidopsis HINKEL gene cause cytokinesis defects, such as enlarged cells with incomplete cell walls and multiple nuclei. Proper targeting of the cytokinesis-specific syntaxin KNOLLE [8] and lateral expansion of the phragmoplast are not affected. However, the phragmoplast microtubules appear to persist in the center, where vesicle fusion should result in cell plate formation. Molecular analysis reveals that the HINKEL gene encodes a plant-specific kinesin-related protein with a putative N-terminal motor domain and is expressed in a cell cycle-dependent manner similar to the KNOLLE gene. Our results suggest that HINKEL plays a role in the reorganization of phragmoplast microtubules during cell plate formation.  相似文献   

8.
All land plants (embryophytes) use a phragmoplast for cytokinesis. Phragmoplasts are distinctive cytoskeletal structures that are instrumental in the deposition of new walls in both vegetative and reproductive phases of the life cycle. In meristems, the phragmoplast is initiated among remaining non-kinetochore spindle fibers between sister nuclei and expands to join parental walls at the site previously marked by the preprophase band of microtubules (PPB). The microtubule cycle and cell cycle are closely coordinated: the hoop-like cortical microtubules of interphase are replaced by the PPB just prior to prophase, the PPB disappears as the spindle forms, and the phragmoplast mediates cell plate deposition after nuclear division. In the reproductive phase, however, cortical microtubules and PPBs are absent and cytokinesis may be uncoupled from the cell cycle resulting in multinucleate cells (syncytia). Minisyncytia of 4 nuclei occur in microsporocytes and several (typically 8) nuclei occur in the developing megagametophyte. Macrosyncytia with thousands of nuclei may occur in the nuclear type endosperm. Cellularization of syncytia involves formation of adventitious phragmoplasts at boundaries of nuclear-cytoplasmic domains (NCDs) defined by radial microtubule systems (RMSs) emanating from non-sister nuclei. Once initiated in the region of microtubule overlap at interfaces of opposing RMSs, the adventitious phragmoplasts appear structurally identical to interzonal phragmoplasts. Phragmoplasts are constructed of multiple opposing arrays similar to what have been termed microtubule converging centers. The individual phragmoplast units are distinctive fusiform bundles of anti-parallel microtubules bisected by a dark mid-zone where vesicles accumulate and fuse into a cell plate.  相似文献   

9.
Kinesins are versatile nano‐machines that utilize variable non‐motor domains to tune specific motor microtubule encounters. During plant cytokinesis, the kinesin‐12 orthologs, PHRAGMOPLAST ORIENTING KINESIN (POK)1 and POK2, are essential for rapid centrifugal expansion of the cytokinetic apparatus, the phragmoplast, toward a pre‐selected cell plate fusion site at the cell cortex. Here, we report on the spatio‐temporal localization pattern of POK2, mediated by distinct protein domains. Functional dissection of POK2 domains revealed the association of POK2 with the site of the future cell division plane and with the phragmoplast during cytokinesis. Accumulation of POK2 at the phragmoplast midzone depends on its functional POK2 motor domain and is fine‐tuned by its carboxy‐terminal region that also directs POK2 to the division site. Furthermore, POK2 likely stabilizes the phragmoplast midzone via interaction with the conserved microtubule‐associated protein MAP65‐3/PLEIADE, a well‐established microtubule cross‐linker. Collectively, our results suggest that dual localized POK2 plays multiple roles during plant cell division.  相似文献   

10.
The spindle midzone is critical for spindle stability and cytokinesis. Chromosomal passenger proteins relocalize from chromosomes to the spindle midzone after anaphase onset. The recent localization of the inner-kinetochore, centromere-binding factor 3 (CBF3) complex to the spindle midzone in budding yeast has led to the discovery of novel functions for this complex in addition to its essential role at kinetochores. In G1/S cells, CBF3 components are detected along dynamic microtubules, where they can "search-and-capture" newly replicated centromeres. During anaphase, CBF3 is transported to the microtubule plus-ends of the spindle midzone. Consistent with this localization, cells containing a mutation in the CBF3 subunit Ndc10p show defects in spindle stability during anaphase. In addition, ndc10-1 cells show defects during cytokinesis, resulting in a defect in cell abscission. These results highlight the importance of midzone-targeted proteins in coordinating mitosis with cell division. Here we discuss these findings and explore the significance of CBF3 transport to microtubule plus-ends at the spindle midzone.  相似文献   

11.
Cytokinesis, the partitioning of the cytoplasm following nuclear division, requires extensive coordination between cell cycle cues, membrane trafficking and microtubule dynamics. Plant cytokinesis occurs within a transient membrane compartment known as the cell plate, to which vesicles are delivered by a plant‐specific microtubule array, the phragmoplast. While membrane proteins required for cytokinesis are known, how these are coordinated with microtubule dynamics and regulated by cell cycle cues remains unclear. Here, we document physical and genetic interactions between Transport Protein Particle II (TRAPPII) tethering factors and microtubule‐associated proteins of the PLEIADE/AtMAP65 family. These interactions do not specifically affect the recruitment of either TRAPPII or MAP65 proteins to the cell plate or midzone. Rather, and based on single versus double mutant phenotypes, it appears that they are required to coordinate cytokinesis with the nuclear division cycle. As MAP65 family members are known to be targets of cell cycle‐regulated kinases, our results provide a conceptual framework for how membrane and microtubule dynamics may be coordinated with each other and with the nuclear cycle during plant cytokinesis.  相似文献   

12.
Cytokinesis requires proper regulation of microtubule dynamics. It has been suggested that dynamic astral microtubules prevent cortical ingression. However, it remains unknown how astral microtubules maintain their dynamic state. Here we show that aurora B kinase, a component of the chromosome passenger complex, is required to sustain the dynamic state of astral microtubules during cytokinesis. Treatment of HeLa cells with Hesperadin, an inhibitor of aurora B kinase, caused abnormal cortical protrusion, leading to cortical ingression in the protruding region and cytokinesis failure. Actin filaments, myosin II, and RhoA failed to localize at the equator but instead distributed along the lateral and/or polar cortex in cells treated with Hesperadin. Time-lapse analyses of microtubule dynamics showed that, in cells treated with Hesperadin, abnormally bundled astral microtubules targeted the protruding region. Mitotic kinesin-like protein 1 (MKLP1), a component of the spindle midzone required for bundling of microtubules, was not detected along bundled astral microtubules in cells treated with Hesperadin, suggesting that factors other than MKLP1 may be involved in this process. Our results suggest that aurora B kinase activity is required for proper regulation of microtubule dynamics to ensure that cytokinesis occurs precisely at the cell equator.  相似文献   

13.
The current model of cytokinesis proposes that spindle poles and associated microtubules determine the cleavage plane, and, once the signal has been delivered to the cortex, the entire mitotic apparatus can be removed without affecting cell division. While supported by compelling data from Echinoderm embryos, recent observations suggest that the model may not be universally applicable. In this study, we have examined the relationship(s) among microtubules, chromosomes, and cleavage activity in living normal rat kidney (NRK) cells with multipolar mitotic figures. We found that cleavage activity correlated with the distribution of midzone microtubule bundles and Telophase Disc 60 protein (TD60) rather than the position of spindle poles. In addition, reduction of midzone microtubules near the cortex, by either nocodazole treatment or spontaneous reorganization in tripolar cells, caused inhibition or regression of furrowing. These results demonstrate that continuous interaction between midzone microtubule bundles and the cortex is required for successful cleavage in tissue culture cells.  相似文献   

14.
Members of the MKLP1 subfamily of kinesin motor proteins localize to the equatorial region of the spindle midzone and are capable of bundling antiparallel microtubules in vitro. Despite these intriguing characteristics, it is unclear what role these kinesins play in dividing cells, particularly within the context of a developing embryo. Here, we report the identification of a null allele of zen-4, an MKLP1 homologue in the nematode Caenorhabditis elegans, and demonstrate that ZEN-4 is essential for cytokinesis. Embryos deprived of ZEN-4 form multinucleate single-celled embryos as they continue to cycle through mitosis but fail to complete cell division. Initiation of the cytokinetic furrow occurs at the normal time and place, but furrow propagation halts prematurely. Time-lapse recordings and microtubule staining reveal that the cytokinesis defect is preceded by the dissociation of the midzone microtubules. We show that ZEN-4 protein localizes to the spindle midzone during anaphase and persists at the midbody region throughout cytokinesis. We propose that ZEN-4 directly cross-links the midzone microtubules and suggest that these microtubules are required for the completion of cytokinesis.  相似文献   

15.
During anaphase, the nonkinetochore microtubules in the spindle midzone become compacted into the central spindle, a structure which is required to both initiate and complete cytokinesis. We show that Tektin 2 (Tek2) associates with the spindle poles throughout mitosis, organizes the spindle midzone microtubules during anaphase, and assembles into the midbody matrix surrounding the compacted midzone microtubules during cytokinesis. Tek2 small interfering RNA (siRNA) disrupts central spindle organization and proper localization of MKLP1, PRC1, and Aurora B to the midzone and prevents the formation of a midbody matrix. Video microscopy revealed that loss of Tek2 results in binucleate cell formation by aberrant fusion of daughter cells after cytokinesis. Although a myosin II inhibitor, blebbistatin, prevents actin-myosin contractility, the microtubules of the central spindle are compacted. Strikingly, Tek2 siRNA abolishes this actin-myosin-independent midzone microtubule compaction. Thus, Tek2-dependent organization of the central spindle during anaphase is essential for proper midbody formation and the segregation of daughter cells after cytokinesis.  相似文献   

16.
Plant cytokinesis involves the formation of a cell plate. This is accomplished with the help of the phragmoplast, a plant-specific cytokinetic apparatus that consists of microtubules and microfilaments. During centrifugal growth of the cell plate, the phragmoplast expands to keep its microtubules at the leading edge of the cell plate. Recent studies have revealed potential regulators of phragmoplast microtubule dynamics and the involvement of a mitogen-activated protein kinase cascade in the control of phragmoplast expansion. These studies provide new insights into the molecular mechanisms of plant cytokinesis.  相似文献   

17.
Directional cell expansion in interphase and nuclear and cell division in M-phase are mediated by four microtubule arrays, three of which are unique to plants: the interphase array, the preprophase band, and the phragmoplast. The plant microtubule-associated protein MAP65 has been identified as a key structural component in these arrays. The Arabidopsis genome has nine MAP65 genes, and here we show that one, AtMAP65-3/PLE, locates only to the mitotic arrays and is essential for cytokinesis. The Arabidopsis pleiade (ple) alleles are single recessive mutations, and we show that these mutations are in the AtMAP65-3 gene. Moreover, these mutations cause C-terminal truncations that abolish microtubule binding. In the ple mutants the anaphase spindle is normal, and the cytokinetic phragmoplast can form but is distorted; not only is it wider, but the midline, the region where oppositely oriented microtubules overlap, is unusually expanded. Here we present data that demonstrate an essential role for AtMAP65-3/PLE in cytokinesis in plant cells.  相似文献   

18.
Microtubules and microfilaments have been imaged in living plant cells and their dynamic changes recorded during division, growth and development. Carboxyfluorescein labeled brain tubulin has been injected into cells that are maintained in an active state in a culture chamber on the microscope stage. Subsequent imaging with the confocal microscope reveals microtubules in the preprophase band, the mitotic apparatus, the phragmoplast, and the cortical array. The structural changes of these microtubules have been observed during transitional stages. In addition, their dynamic features are demonstrated by depolymerization in elevated calcium, low temperature, and in the drug oryzalin, and by repolymerization when returned to normal conditions. Examination of living Tradescantia stamen hair cells, which have been injected with fluorescent phalloidin to label the actin microfilaments, reveals hitherto undisclosed aspects of the preparation of the division site and dynamics of the phragmoplast cytoskeleton. During prophase microfilaments occur throughout the cell cortex, with those in the region of the preprophase band becoming transversely aligned. At nuclear envelope breakdown, these specifically disassemble, leaving a circumferential zone from which microfilaments remain absent throughout division. During cytokinesis microfilaments arise within the phragmoplast, oriented parallel to the microtubules, but excluded from the zone where the MTs overlap and where cell plate vesicles aggregate. The phragmoplast microfilaments, in a manner similar to microtubules, shorten in length, expand in girth, and eventually disassemble when the cell plate is complete.  相似文献   

19.
The mechanism that positions the cytokinetic contractile ring is unknown, but derives from the spindle midzone. We show that an interaction between the Rho GTP exchange factor, Pebble, and the Rho family GTPase-activating protein, RacGAP50C, connects the contractile ring to cortical microtubules at the site of furrowing in D. melanogaster cells. Pebble regulates actomyosin organization, while RacGAP50C and its binding partner, the Pavarotti kinesin-like protein, regulate microtubule bundling. All three factors are required for cytokinesis. As furrowing begins, these proteins colocalize to a cortical equatorial ring. We propose that RacGAP50C-Pavarotti complexes travel on cortical microtubules to the cell equator, where they associate with the Pebble RhoGEF to position contractile ring formation and coordinate F-actin and microtubule remodeling during cytokinesis.  相似文献   

20.
While astral microtubules are believed to be primarily responsible for the stimulation of cytokinesis in Echinoderm embryos, it has been suggested that a signal emanating from the chromosomal region and mediated by the interzonal microtubules stimulates cytokinesis in cultured mammalian cells. To test this hypothesis, we examined cytokinesis in normal rat kidney cells treated with an inhibitor of topoisomerase II, (+)-1,2-bis(3,5-dioxopiperaz-inyl-1-yl)propane, which prevents the separation of sister chromatids and the formation of a spindle interzone. The majority of treated cells showed various degrees of abnormality in cytokinesis. Furrows frequently deviated from the equatorial plane, twisting daughter cells into irregular shapes. Some cells developed furrows in regions outside the equator or far away from the spindle. In addition, F-actin and myosin II accumulated at the lateral ingressing margins but did not form a continuous band along the equator as in control cells. Imaging of microinjected 5- (and 6-) carboxymtetramethylrhodamine-tubulin revealed that a unique set of microtubules projected out from the chromosomal vicinity upon anaphase onset. These microtubules emanated toward the lateral cortex, where they delineated sites of microtubule bundle formation, cortical ingression, and F-actin and myosin II accumulation. As centrosome integrity and astral microtubules appeared unperturbed by (+)-1,2-bis(3,5-dioxopiperaz-inyl-1-yl)propane treatment, the present observations cannot be easily explained by the conventional model involving astral microtubules. We suggest that in cultured epithelial cells the organization of the chromosomes dictates the organization of midzone microtubules, which in turn determines and maintains the cleavage activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号