首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Two major peroxidases are secreted by the fungus Pleurotus eryngii in lignocellulose cultures. One is similar to Phanerochaete chrysosporium manganese-dependent peroxidase. The second protein (PS1), although catalyzing the oxidation of Mn2+ to Mn3+ by H2O2, differs from the above enzymes by its manganese-independent activity enabling it to oxidize substituted phenols and synthetic dyes, as well as the lignin peroxidase (LiP) substrate veratryl alcohol. This is by a mechanism similar to that reported for LiP, as evidenced by p-dimethoxybenzene oxidation yielding benzoquinone. The apparent kinetic constants showed high activity on Mn2+, but methoxyhydroquinone was the natural substrate with the highest enzyme affinity (this and other phenolic substrates are not efficiently oxidized by the P. chrysosporium peroxidases). A three-dimensional model was built using crystal models from four fungal peroxidase as templates. The model suggests high structural affinity of this versatile peroxidase with LiP but shows a putative Mn2+ binding site near the internal heme propionate, involving Glu36, Glu40, and Asp181. A specific substrate interaction site for Mn2+ is supported by kinetic data showing noncompetitive inhibition with other peroxidase substrates. Moreover, residues reported as involved in LiP interaction with veratryl alcohol and other aromatic substrates are present in peroxidase PS1 such as His82 at the heme-channel opening, which is remarkably similar to that of P. chrysosporium LiP, and Trp170 at the protein surface. These residues could be involved in two different hypothetical long range electron transfer pathways from substrate (His82-Ala83-Asn84-His47-heme and Trp170-Leu171-heme) similar to those postulated for LiP.  相似文献   

2.
In this study, the full mitochondrial genome of a basidiomycete fungus, Pleurotus ostreatus, was sequenced and analyzed. It is a circular DNA molecule of 73 242 bp and contains 44 known genes encoding 18 proteins and 26 RNA genes. The protein-coding genes include 14 common mitochondrial genes, one ribosomal small subunit protein 3 gene, one RNA polymerase gene and two DNA polymerase genes. In addition, one RNA and one DNA polymerase genes were identified in a mitochondrial plasmid. These two genes show relatively low similarities to their homologs in the mitochondrial genome but they are nearly identical to the known mitochondrial plasmid genes from another Pleurotus ostreatus strain. This suggests that the plasmid may mediate the horizontal gene transfer of the DNA and RNA polymerase genes into mitochondrial genome, and such a transfer may be an ancient event. Phylogenetic analysis based on the cox1 ORFs verified the traditional classification of Pleurotus ostreatus among fungi. However, the discordances were observed in the phylogenetic trees based on the six cox1 intronic ORFs of Pleurotus ostreatus and their homologs in other species, suggesting that these intronic ORFs are foreign DNA sequences obtained through HGT. In summary, this analysis provides valuable information towards the understanding of the evolution of fungal mtDNA.  相似文献   

3.
4.
DyP, a unique dye-decolorizing enzyme from the fungus Thanatephorus cucumeris Dec 1, has been classified as a peroxidase but lacks homology to almost all other known plant peroxidases. The primary structure of DyP shows moderate sequence homology to only two known proteins: the peroxide-dependent phenol oxidase, TAP, and the hypothetical peroxidase, cpop21. Here, we show the first crystal structure of DyP and reveal that this protein has a unique tertiary structure with a distal heme region that differs from that of most other peroxidases. DyP lacks an important histidine residue known to assist in the formation of a Fe4+ oxoferryl center and a porphyrin-based cation radical intermediate (compound I) during the action of ubiquitous peroxidases. Instead, our tertiary structural and spectrophotometric analyses of DyP suggest that an aspartic acid and an arginine are involved in the formation of compound I. Sequence analysis reveals that the important aspartic acid and arginine mentioned above and histidine of the heme ligand are conserved among DyP, TAP, and cpop21, and structural and phylogenetic analyses confirmed that these three enzymes do not belong to any other families of peroxidase. These findings, which strongly suggest that DyP is a representative heme peroxidase from a novel family, should facilitate the identification of additional new family members and accelerate the classification of this novel peroxidase family.  相似文献   

5.
We report cloning and sequencing of gene ps1 encoding a versatile peroxidase combining catalytic properties of lignin peroxidase (LiP) and manganese peroxidase (MnP) isolated from lignocellulose cultures of the white-rot fungus Pleurotus eryngii. The gene contains 15 putative introns, and the deduced amino acid sequence consists of a 339-residue mature protein with a 31-residue signal peptide. Several putative response elements were identified in the promoter region. Amino acid residues involved in oxidation of Mn(2+) and aromatic substrates by direct electron transfer to heme and long-range electron transfer from superficial residues as predicted by analogy with Phanerochaete chrysosporium MnP and LiP, respectively. A dendrogram is presented illustrating sequence relationships between 29 fungal peroxidases.  相似文献   

6.
Dye-decolorizing peroxidases (DyP) are atypical peroxidases showing no homology to other fungal peroxidases and lacking the typical heme binding region conserved among plant peroxidase superfamily. The gene and the corresponding cDNA encoding DyP from Pleurotus ostreatus have been identified on the basis of sequence homology analyses. The deduced amino acid sequence shares 43% identity with DyP from the ascomycete Thanatephorus cucumeris Dec 1. Analyses of the protein sequence by homology searches pointed out some properties of the DyP-type peroxidase family, which includes members from bacteria, ascomycete, and basidiomycete fungi. Some amino acids (C374, H379, and Y501 in the P. ostreatus DyP sequence) are proposed as candidates for the heme ligand, providing a basis for further investigations on the structure of the DyP type peroxidase family members.  相似文献   

7.
Molecular phylogeny among catalase-peroxidases, cytochrome c peroxidases, and ascorbate peroxidases was analysed. Sixty representative sequences covering all known subgroups of class I of the superfamily of bacterial, fungal, and plant heme peroxidases were selected. Each sequence analysed contained the typical peroxidase motifs evolved to bind effectively the prosthetic heme group, enabling peroxidatic activity. The N-terminal and C-terminal domains of catalase-peroxidases matching the ancestral tandem gene duplication event were treated separately in the phylogenetic analysis to reveal their specific evolutionary history. The inferred unrooted phylogenetic tree obtained by three different methods revealed the existence of four clearly separated clades (C-terminal and N-terminal domains of catalase-peroxidases, ascorbate peroxidases, and cytochrome c peroxidases) which were segregated early in the evolution of this superfamily. From the results, it is obvious that the duplication event in the gene for catalase-peroxidase occurred in the later phase of evolution, in which the individual specificities of the peroxidase families distinguished were already formed. Evidence is presented that class I of the heme peroxidase superfamily is spread among prokaryotes and eukaryotes, obeying the birth-and-death process of multigene family evolution.  相似文献   

8.
Trametes pubescens and Pleurotus ostreatus, immobilized on polyurethane foam cubes in bioreactors, were used to decolorize three industrial and model dyes at concentrations of 200, 1000 and 2000 ppm. Five sequential cycles were run for each dye and fungus. The activity of laccase, Mn-dependent and independent peroxidases, lignin peroxidase, and aryl-alcohol oxidase were daily monitored during the cycles and the toxicity of media containing 1000 and 2000 ppm of each dye was assessed by the Lemna minor (duckweed) ecotoxicity test. Both fungi were able to efficiently decolorize all dyes even at the highest concentration, and the duckweed test showed a significant reduction (p 相似文献   

9.
Members of the superfamily of plant, fungal, and bacterial peroxidases are known to be present in a wide variety of living organisms. Extensive searching within sequencing projects identified organisms containing sequences of this superfamily. Class I peroxidases, cytochrome c peroxidase (CcP), ascorbate peroxidase (APx), and catalase peroxidase (CP), are known to be present in bacteria, fungi, and plants, but have now been found in various protists. CcP sequences were detected in most mitochondria-possessing organisms except for green plants, which possess only ascorbate peroxidases. APx sequences had previously been observed only in green plants but were also found in chloroplastic protists, which acquired chloroplasts by secondary endosymbiosis. CP sequences that are known to be present in prokaryotes and in Ascomycetes were also detected in some Basidiomycetes and occasionally in some protists. Class II peroxidases are involved in lignin biodegradation and are found only in the Homobasidiomycetes. In fact class II peroxidases were identified in only three orders, although degenerate forms were found in different Pezizomycota orders. Class III peroxidases are specific for higher plants, and their evolution is thought to be related to the emergence of the land plants. We have found, however, that class III peroxidases are present in some green algae, which predate land colonization. The presence of peroxidases in all major phyla (except vertebrates) makes them powerful marker genes for understanding the early evolutionary events that led to the appearance of the ancestors of each eukaryotic group.  相似文献   

10.
During solid-state fermentation of wheat straw, a natural lignocellulosic substrate, the white rot fungus Pleurotus ostreatus produced an extracellular H2O2-requiring Remazol brilliant blue R (RBBR)-decolorizing enzymatic activity along with manganese peroxidase, manganese-independent peroxidase, and phenol oxidase activities. The presence of RBBR was not essential for the production of RBBR-decolorizing enzymatic activity by P. ostreatus, because this activity was also produced in the absence of RBBR. This RBBR-decolorizing enzymatic activity in crude enzyme preparations of 14- and 20-day-old cultures exhibited an apparent Km for RBBR of 31 and 52 microM, respectively. The RBBR-decolorizing enzyme activity was maximal in the pH range 3.5 to 4.0. This activity was independent of manganese, and veratryl alcohol had no influence on it. Manganese peroxidase of P. ostreatus did not decolorize RBBR. This H2O2-dependent RBBR-decolorizing enzymatic activity behaved like an oxygenase possessing a catalytic metal center, perhaps heme, because it was inhibited by Na2S2O5, NaCN, NaN3, and depletion of dissolved oxygen. Na2S2O5 brought an early end to the reaction without interfering with the initial reaction rate of RBBR oxygenase. The activity was also inhibited by cysteine. Concentrations of H2O2 higher than 154 microM were observed to be inhibitory as well. Decolorization of RBBR by P. ostreatus is an oxidative process.  相似文献   

11.
Catalase–peroxidases (KatGs) are ancestral bifunctional heme peroxidases found in archaeons, bacteria and lower eukaryotes. In contrast to homologous cytochrome c peroxidase (CcP) and ascorbate peroxidase (APx) homodimeric KatGs have a two-domain monomeric structure with a catalytic N-terminal heme domain and a C-terminal domain of high sequence and structural similarity but without obvious function. Nevertheless, without its C-terminal counterpart the N-terminal domain exhibits neither catalase nor peroxidase activity. Except some hybrid-type proteins all other members of the peroxidase–catalase superfamily lack this C-terminal domain. In order to probe the role of the two-domain monomeric structure for conformational and thermal stability urea and temperature-dependent unfolding experiments were performed by using UV–Vis-, electronic circular dichroism- and fluorescence spectroscopy, as well as differential scanning calorimetry. Recombinant prokaryotic (cyanobacterial KatG from Synechocystis sp. PCC6803) and eukaryotic (fungal KatG from Magnaporthe grisea) were investigated. The obtained data demonstrate that the conformational and thermal stability of bifunctional KatGs is significantly lower compared to homologous monofunctional peroxidases. The N- and C-terminal domains do not unfold independently. Differences between the cyanobacterial and the fungal enzyme are relatively small. Data will be discussed with respect to known structure and function of KatG, CcP and APx.  相似文献   

12.
Bacterial catalase-peroxidases are enzymes containing 0.5-1.0 heme per subunit. The identical subunits are generally 80 kDa in size, and the sequenced subunits of E. coli, S. typhimurium and B. stearothermophilus contain 726-731 amino acid residues per subunit. The heme-containing peroxidases of plants, fungi and yeast are monomeric, homologous and 290-350 residues in size. Analyses of the amino acid sequences indicate that the double length of the bacterial peroxidases can be ascribed to gene duplication. Each half is homologous to eukaryotic, monomeric peroxidase and can be modelled into the high-resolution crystal structure of yeast cytochrome c peroxidase. The comparisons and modelling have predicted: (1) the C-terminal half does not bind heme, and bacterial peroxidases have one heme per subunit; (2) the ten dominating helices observed in the yeast enzyme are highly conserved and connected by surface loops which are often longer in the bacterial peroxidases; and (3) yeast cytochrome c peroxidase has evolved more slowly than other known peroxidases. The study has revealed ten invariant residues and a number of highly conserved residues present in peroxidases of the plant peroxidase superfamily and provides a basis for rationally engineered peroxidases.  相似文献   

13.
Degradation of butylbenzyl phthalate (BBP) by the white rot fungus Pleurotus ostreatus and the activities of some degrading enzymes were examined in two different media containing 100 mg/l of the compound. P. ostreatus pregrown for 7 days in complex YMG medium was able to completely degrade BBP within an additional 24 h but degraded only 35 mg/l of BBP in 5 days of incubation in minimal medium. Fungal cell mass in the culture in YMG medium was higher in the presence than in the absence of BBP. The esterase activity of the fungal culture in YMG medium was higher than that in minimal medium and increased with the addition of BBP. On the contrary, laccase activity was higher in minimal medium and it did not increase upon the addition of BBP. General peroxidase activity increased for a few days after the addition of BBP to both media. The degradation of BBP and its metabolites by P. ostreatus thus may be attributed mostly to esterase rather than lignin-degrading laccase. In addition, the activities of the enzymes involved in BBP degradation and their changes varied significantly in the different media and culture conditions.  相似文献   

14.
Zámocký M  Dunand C 《FEBS letters》2006,580(28-29):6655-6664
Novel open reading frames coding for cytochrome c peroxidase (CcP) belonging to the superfamily of bacterial, fungal, and plant heme peroxidases were analyzed in the available fungal genomes. Multiple sequence alignment of 71 selected peroxidase genes revealed the presence of three conserved regions essential for their function: one on the distal and two on the proximal side of the prosthetic heme group. Conserved sequence motifs on the proximal heme side are peculiar for CcPs and are responsible for their reactivity. Phylogenetic analysis performed with the distance method as well as with the maximum likelihood method revealed the existence of three distinct subfamilies of fungal CcP and their relationship to other members of the peroxidase superfamily. These divergent CcP evolutionary lines apparently evolved from a single primordial heme peroxidase gene in parallel with the evolution of ascorbate peroxidase genes. Analyzed CcPs differ significantly in their N-terminal sequences. Only subfamily I did not exhibit a presence of any signal sequence. Subfamily II members possess a well defined signal sequence allowing processing and release into mitochondrion and also in subfamily III a signal sequence was detected. Several here analyzed peroxidase genes mainly from Candida albicans and from Rhizopus oryzae can be considered interesting for the investigation of the structure-function relationship of novel CcPs revealing differences to the well documented properties of cytochrome c peroxidase from Saccharomyces cerevisiae.  相似文献   

15.
Lichens belonging to the order Peltigerales display strong activity of multi-copper oxidases (e.g. tyrosinase) as well as heme-containing peroxidases. The lichen peroxidase was purified to homogeneity from the thallus of Leptogium saturninum (LsaPOX) by fast protein liquid chromatography and then partially characterized.The oligomeric protein occurs as both 79 kDa dimeric and 42 kDa monomeric forms, and displayed broad substrate specificity. In addition to an ability to oxidize classic peroxidase substrates (e.g. 2,6-dimethoxyphenol), the enzyme could convert recalcitrant compounds such as synthetic dyes (e.g. Azure B and Reactive Blue 5), 4-nitrophenol and non-phenolic methoxylated aromatics (e.g. veratryl alcohol). Comparing LsaPOX with a basidiomycete dye-decolorizing (DyP)-type peroxidase from Auricularia auricula-judae showed that the lichen enzyme has a high-redox potential, with oxidation capabilities ranging between those of known plant and fungal peroxidases. Internal peptide fragments show homology (up to 60%) with putative proteins from free-living ascomycetes (e.g. Penicillium marneffei and Neosartorya fischeri), but not to sequences of algal or cyanobacterial peptides or to known fungal, bacterial or plant peroxidases.LsaPOX is the first heme peroxidase purified from an ascomyceteous lichen that may help the organism to successfully exploit the extreme micro-environments in which they often grow.  相似文献   

16.
Versatile peroxidases are heme enzymes that combine catalytic properties of lignin peroxidases and manganese peroxidases, being able to oxidize Mn(2+) as well as phenolic and non-phenolic aromatic compounds in the absence of mediators. The catalytic process (initiated by hydrogen peroxide) is the same as in classical peroxidases, with the involvement of 2 oxidizing equivalents and the formation of the so-called Compound I. This latter state contains an oxoferryl center and an organic cation radical that can be located on either the porphyrin ring or a protein residue. In this study, a radical intermediate in the reaction of versatile peroxidase from the ligninolytic fungus Pleurotus eryngii with H(2)O(2) has been characterized by multifrequency (9.4 and 94 GHz) EPR and assigned to a tryptophan residue. Comparison of experimental data and density functional theory theoretical results strongly suggests the assignment to a tryptophan neutral radical, excluding the assignment to a tryptophan cation radical or a histidine radical. Based on the experimentally determined side chain orientation and comparison with a high resolution crystal structure, the tryptophan neutral radical can be assigned to Trp(164) as the site involved in long-range electron transfer for aromatic substrate oxidation.  相似文献   

17.
Versatile peroxidase from white rot fungus Bjerkandera adusta was over-expressed in a soluble form in Escherichia coli. In the constructed enzyme model based on the selected gene from B. adusta, the active sites for oxidation of Mn(2+) ions and for oxidation of aromatic substrates were identified, both characteristic for versatile peroxidase. For over-expression of the recombinant enzyme different host strains, media formulations, growth temperatures, and fusion partners were tested. With the bacterial strain BL21(DE3)pLysS cultivated at 25 degrees C in auto-induction medium and presence of heme, a soluble peroxidase with incorporated heme and activity against different substrates was obtained. By exploiting an appropriate expression system and providing suitable culture conditions, the recombinant fungal peroxidases in soluble form can be produced in bacteria.  相似文献   

18.
Pleurotus ostreatus is a widely cultivated white-rot fungus. Owing to its considerable enzymatic versatility P. ostreatus has become the focus of increasing attention for its possible utility in biobleaching and bioremediation applications. Interactions between microorganisms can be an important factor in those processes. In this study, we describe the presence of a bacterial species associated with P. ostreatus strain G2. This bacterial species grew slowly (approximately 30 days) in the liquid and semi-solid media tested. When P. ostreatus was inoculated in solid media containing Tween 80 or Tween 20, bacterial microcolonies were detected proximal to the fungal colonies, and the relevant bacterium was identified via the analysis of a partial 16S rDNA sequence; it was determined to belong to the Burkholderia cepacia complex, but was not closely related to other fungus-isolated Burkholderiaceae. New specific primers were designed, and confirmed the presence of in vitro P. ostreatus cultures. This is the first time that a bacterial species belonging to the B. cepacia complex has been found associated with P. ostreatus.  相似文献   

19.
The white rot fungus Pleurotus ostreatus was able to mineralize to (sup14)CO(inf2) 7.0% of [(sup14)C]catechol, 3.0% of [(sup14)C]phenanthrene, 0.4% of [(sup14)C]pyrene, and 0.19% of [(sup14)C]benzo[a]pyrene by day 11 of incubation. It also mineralized [(sup14)C]anthracene (0.6%) much more slowly (35 days) and [(sup14)C]fluorene (0.19%) within 15 days. P. ostreatus did not mineralize fluoranthene. The activities of the enzymes considered to be part of the ligninolytic system, laccase and manganese-inhibited peroxidase, were observed during fungal growth in the presence of the various polycyclic aromatic hydrocarbons. Although activity of both enzymes was observed, no distinct correlation to polycyclic aromatic hydrocarbon degradation was found.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号