首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
R Bürger 《Genetics》1999,153(2):1055-1069
The role of recombination and sexual reproduction in enhancing adaptation and population persistence in temporally varying environments is investigated on the basis of a quantitative-genetic multilocus model. Populations are finite, subject to density-dependent regulation with a finite growth rate, diploid, and either asexual or randomly mating and sexual with or without recombination. A quantitative trait is determined by a finite number of loci at which mutation generates genetic variability. The trait is under stabilizing selection with an optimum that either changes at a constant rate in one direction, exhibits periodic cycling, or fluctuates randomly. It is shown by Monte Carlo simulations that if the directional-selection component prevails, then freely recombining populations gain a substantial evolutionary advantage over nonrecombining and asexual populations that goes far beyond that recognized in previous studies. The reason is that in such populations, the genetic variance can increase substantially and thus enhance the rate of adaptation. In nonrecombining and asexual populations, no or much less increase of variance occurs. It is explored by simulation and mathematical analysis when, why, and by how much genetic variance increases in response to environmental change. In particular, it is elucidated how this change in genetic variance depends on the reproductive system, the population size, and the selective regime, and what the consequences for population persistence are.  相似文献   

2.
Fixation probability in spatially changing environments.   总被引:5,自引:0,他引:5  
The fixation probability of a mutant in a subdivided population with spatially varying environments is investigated using a finite island model. This probability is different from that in a panmictic population if selection is intermediate to strong and migration is weak. An approximation is used to compute the fixation probability when migration among subpopulations is very weak. By numerically solving the two-dimensional partial differential equation for the fixation probability in the two subpopulation case, the approximation was shown to give fairly accurate values. With this approximation, we show in the case of two subpopulations that the fixation probability in subdivided populations is greater than that in panmictic populations mostly. The increase is most pronounced when the mutant is selected for in one subpopulation and is selected against in the other subpopulation. Also it is shown that when there are two types of environments, further subdivision of subpopulations does not cause much change of the fixation probability in the no dominance case unless the product of the selection coefficient and the local population size is less than one. With dominance, the effect of subdivision becomes more complex.  相似文献   

3.
How environmental variances in quantitative traits are influenced by variable environments is an important problem in evolutionary biology. In this study, the evolution and maintenance of phenotypic variance in a plastic trait under stabilizing selection are investigated. The mapping from genotypic value to phenotypic value of the quantitative trait is approximated by a linear reaction norm, with genotypic effects on its phenotypic mean and sensitivity to environment. The environmental deviation is assumed to be decomposed into environmental quality, which interacts with genotypic value, and residual developmental noise, which is independent of genotype. Environmental quality and the optimal phenotype of stabilizing selection are allowed to randomly fluctuate in both space and time, and individuals migrate equally before development and reproduction among different niches. Analyses show that phenotypic plasticity is adaptive within variable environments if correlations have become established between the optimal phenotype and environmental quality in space and/or time. The evolved plasticity increases with variances in optimal phenotypes and correlations between optimal phenotype and environmental quality; this further induces increases in mean fitness and the environmental variance in the trait. Under certain circumstances, however, the environmental variance may decrease with increase in variation in environmental quality.  相似文献   

4.
This article surveys progress in Darwinian medicine since 1991. Evolutionary thinking has been providing an increasing flow of fresh ideas into medical science, ideas that would not be suggested by other perspectives. Recent contributions have shed new light on the evolution of virulence, of antibiotic resistance, of oocytic atresia, of menopause, of the timing of the expression of genetic disease, of links between mate choice and disease resistance, and of genomic conflict between mother and fetus over resource provisioning. An important consequence of changes from the environment of evolutionary adaptedness concerns reproductive cancers; the incidence of reproductive cancers may be linked to changes in the frequency of menstruation in postindustrial societies. Other intriguing developments include some unanticipated and undesirable consequences of good hygiene, hope from an unexpected quarter for progress on nerve and muscle regeneration, evolutionary interpretations of mental disease, and insights from functional genomics into the nature of tradeoffs. The application of evolutionary thinking to problems in medical research and practice has thus yielded an abundant and growing harvest of insights. Some are well founded, others remain speculative. The field is moving from an initial phase dominated by speculation and hypothesis formation into a more rigorous phase of experimental testing of explicit alternatives. Currently the most promising areas, those in which experimental rigor can be applied efficiently, include experimental evolution and functional genomics. The pioneers can be proud of what they have set in motion.  相似文献   

5.
6.
Liberman U  Van Cleve J  Feldman MW 《Genetics》2011,187(3):837-851
Phenotypic switching has been observed in laboratory studies of yeast and bacteria, in which the rate of such switching appears to adjust to match the frequency of environmental changes. Among possible mechanisms of switching are epigenetic influences on gene expression and variation in levels of methylation; thus environmental and/or genetic factors may contribute to the rate of switching. Most previous analyses of the evolution of phenotypic switching have compared exponential growth rates of noninteracting populations, and recombination has been ignored. Our genetic model of the evolution of switching rates is framed in terms of a mutation-modifying gene, environments that cause periodic changes in fitness, and recombination between the mutation modifier and the gene under selection. Exact results are obtained for all recombination rates and symmetric fitnesses that strongly generalize earlier results obtained under complete linkage and strong constraints on the relation between fitness and period of switching. Our analytical and numerical results suggest a general principle that recombination reduces the stable rate of switching in symmetric and asymmetric fitness regimes and when the period of switching is random. As the recombination rate increases, it becomes less likely that there is a stable nonzero rate of switching.  相似文献   

7.
At the core of his political rhetoric, Donald Trump speaks about work: the experience of laboring, the agonies of the labor market, and the future of employment. This article considers how the anthropology of work can contribute to an analysis of the political moment. Many commentators, including Trump himself, have interpreted a vote for Trump as an act of labor nostalgia, a gesture of yearning for an industrial past. Such commentary describes Trump voters by describing the jobs that many of them once did—manufacturing jobs. But what if, instead, we considered the jobs that many Trump voters now do, that is, service jobs? What if Trump’s discourse, with its themes of domination and submission, offers an incisive response to the intimacies of power as lived by restaurant workers and customer service representatives? Could the election come into focus as an uprising in the service sector? This article takes two steps. First, it engages with literature from sociology and economics in order to point towards a crucial transformation in the US workplace since the 2008 financial crisis: the ascendancy of monopolistic corporations that defy the neoliberal model. Second, the article explores new developments in the service sector by assessing the work experience of Uber drivers. Trump’s rhetoric can be interpreted as a response to the 2008 crisis and the novel modes of service work that the crisis made possible—including Uber. As it faces the political consequences of today’s toil, the anthropology of work gains a new research agenda.  相似文献   

8.
Peischl S  Kirkpatrick M 《Genetics》2012,191(3):895-906
Understanding adaptation in changing environments is an important topic in evolutionary genetics, especially in the light of climatic and environmental change. In this work, we study one of the most fundamental aspects of the genetics of adaptation in changing environments: the establishment of new beneficial mutations. We use the framework of time-dependent branching processes to derive simple approximations for the establishment probability of new mutations assuming that temporal changes in the offspring distribution are small. This approach allows us to generalize Haldane's classic result for the fixation probability in a constant environment to arbitrary patterns of temporal change in selection coefficients. Under weak selection, the only aspect of temporal variation that enters the probability of establishment is a weighted average of selection coefficients. These weights quantify how much earlier generations contribute to determining the establishment probability compared to later generations. We apply our results to several biologically interesting cases such as selection coefficients that change in consistent, periodic, and random ways and to changing population sizes. Comparison with exact results shows that the approximation is very accurate.  相似文献   

9.
Bacterial persistence: a model of survival in changing environments   总被引:16,自引:0,他引:16       下载免费PDF全文
Kussell E  Kishony R  Balaban NQ  Leibler S 《Genetics》2005,169(4):1807-1814
The persistence phenotype is an epigenetic trait exhibited by a subpopulation of bacteria, characterized by slow growth coupled with an ability to survive antibiotic treatment. The phenotype is acquired via a spontaneous, reversible switch between normal and persister cells. These observations suggest that clonal bacterial populations may use persister cells, whose slow division rate under growth conditions leads to lower population fitness, as an "insurance policy" against antibiotic encounters. We present a model of Escherichia coli persistence, and using experimentally derived parameters for both wild type and a mutant strain (hipQ) with markedly different switching rates, we show how fitness loss due to slow persister growth pays off as a risk-reducing strategy. We demonstrate that wild-type persistence is suited for environments in which antibiotic stress is a rare event. The optimal rate of switching between normal and persister cells is found to depend strongly on the frequency of environmental changes and only weakly on the selective pressures of any given environment. In contrast to typical examples of adaptations to features of a single environment, persistence appears to constitute an adaptation that is tuned to the distribution of environmental change.  相似文献   

10.
As the scope and complexity of synthetic biology grows, an understanding of evolution and ecology will be critical to its success.  相似文献   

11.
12.
Migratory species are widespread in terrestrial, aquatic and aerial environments, and are important both ecologically and economically. Since migration is an adaptive response to particular conditions, environmental changes (climate or otherwise) will potentially alter the selective pressures on movement behavior. Such changes may also interfere with, or disrupt, a species’ ability to migrate. In either case, environmental changes could lead to the reduction or total loss of a migration, yet we have little understanding of when to expect these outcomes to occur. Here, I argue that an understanding of both the proximate and ultimate drivers of migration is needed if we are to predict the fate of migrations under changing environmental conditions. I review what is currently known about the drivers of animal migration, but show that we also need a more complete synthesis of migratory patterns across diverse ecosystems and taxonomic groups. The current understanding of migration indicates that (1) drivers of migration vary across species and ecosystems, and (2) a species’ ability to adapt to environmental change successfully depends in part on its migration drivers. Together, these findings suggest a way forward for studying and generating predictions of how changing environmental conditions will differentially impact species by taxonomic group and geographic region of the world.  相似文献   

13.
In order to assess how diversity changes over time at sites undergoing environmental change, we examined three data sets on long-term trends in taxonomic richness and composition: (1) 22 years of rodent censuses from a site in the Chihuahuan Desert of Arizona; (2) 50 years of bird surveys from a three-county region of northern Michigan; and (3) approximately 10,000 years of pollen records from two sites in Europe. In all three cases, richness has remained remarkably constant despite large changes in composition. The results suggest that while species composition may be highly variable and change substantially in response to environmental change, species diversity is an emergent property of ecosystems that is often maintained within narrow limits. Such regulation of diversity requires maintenance of relatively constant levels of productivity and resource availability and an open system with opportunity for compensatory colonizations and extinctions. In addition to studying the effects of diversity on biogeochemical processes, it will often be useful to think of species richness as an emergent consequence of ecosystem processes.  相似文献   

14.
The "nude" mouse is a unique tool for immunologic studies. Its relatively short life span dictates the application of rigid environmental controls to increase longevity if the mouse is to assume the role of a practical experimental animal. In this paper we discussed the husbandry procedures employed to raise "nude" mice in our facilities under conventional, defined flora, and germfree conditions. Conventional and defined flora mice were raised on laminar flow stay-clean rocks, and germfree "nudes" were housed in self-contained germfree isolators. The major cause of morbidity and mortality among conventional and defined flora "nude" mice was fulminating hepatitis. We presented evidence that the etiologic agent of the disease was mouse hepatitis virus (MHV). Germfree "nude" mice were completely free from viral and bacterial diseases.  相似文献   

15.
In this paper we discuss the problem of evolution when individual organisms are subjected to heterogeneous environments within their own lifetimes. We first develop a model of environmental heterogeneity in which there are two discrete environmental states. Transitions between states are governed by a stochastic matrix. Next, we examine how an organism responds to this heterogeneity. We assume that L consecutive time units of the environmental process are sampled during the normal life span of the organism, and that the individual's fitness is determined in part by a component unrelated to this heterogeneity and by other components that describe the fitness response to the heterogeneity. The fitness responses are functions of the environmental state and of how long the organism has been previously exposed to that state; i.e., fitness response is dependent upon the environmental context. We then discuss how this individually experienced heterogeneity is translated to the populational level. Finally, genetic constraints are overlaid so that the tools of population genetics may be used to make evolutionary predictions.  相似文献   

16.
17.
Since their first formulations about half a century ago, the soft and hard selection models have become classical frameworks to study selection in subdivided populations. These models differ in the timing of density regulation and represent two extreme types of selection: density- and frequency-dependent selection (soft) and density- and frequency-independent selection (hard). Yet only few attempts have been made so far to model intermediate scenarios. Here, we design a model where migration may happen twice during the life cycle: before density regulation with probability d(J) (juvenile migration) and after density regulation with probability d(A) (adult migration). In the first step, we analyze the conditions for the coexistence of two specialists. We find that coexistence is possible under a large range of selection types, even when environmental heterogeneity is low. Then, we investigate the different possible outcomes obtained through gradual evolution. We show that polymorphism is more likely to evolve when the trade-off is weak, environmental heterogeneity is high, migration is low, and in particular when juvenile migration is low relative to adult migration, because the timing of migration affects the magnitude of frequency-dependent selection relative to gene flow. This model may provide a more general theoretical framework to experimentally study evolution in heterogeneous environments.  相似文献   

18.
Eco-immunology is the field of study that attempts to understand the functions of the immune system in the context of the host's environment. Amphibians are currently suffering devastating declines and extinctions in nearly all parts of the world due to the emerging infectious disease chytridiomycosis caused by the chytrid fungus, Batrachochytrium dendrobatidis. Because chytridiomycosis is a skin infection and remains confined to the skin, immune defenses of the skin are critical for survival. Skin defenses include secreted antimicrobial peptides and immunoglobulins as well as antifungal metabolites produced by symbiotic skin bacteria. Low temperatures, toxic chemicals, and stress inhibit the immune system and may impair natural defenses against B. dendrobatidis. Tadpoles' mouth parts can be infected by B. dendrobatidis. Damage to the mouth parts can impair growth, and the affected tadpoles maintain the pathogen in the environment even when adults have dispersed. Newly metamorphosing frogs appear to be especially vulnerable to infection and to the lethal effects of this pathogen because the immune system undergoes a dramatic reorganization at metamorphosis, and postmetamorphic defenses are not yet mature. Here we review our current understanding of amphibian immune defenses against B. dendrobatidis and the ability of the pathogen to resist those defenses. We also briefly review what is known about the impacts of temperature, environmental chemicals, and stress on the host-pathogen interactions and suggest future directions for research.  相似文献   

19.
Human evolution and human-influenced evolution of living organisms such as animals,plants,and microorganisms on our planet are among the most active and inspiring topics of scientific research.This is because the evolutionary processes influenced by humans can be detected within a quantifiable period of time,and the consequences of such evolutionary processes vary significantly in terms of their rates and diversification,compared to those under the conditions of no human influences (Hendry et al.,2008).For example,domesticated animals (e.g.,chicken and pig)and plant species (e.g.,rice and maize) have evolved relatively rapidly within the past 10 000 years,which has resulted in tremendous genetic diversity of these domesticates under human influences in different environments (Dorshorst et al.,2011;Huang et al.,2012;Rubin et al.,2012).However,the rapid evolution and changes in these organisms have had significant impacts on the environments that humans and these organisms inhabit.  相似文献   

20.
Northern environments present ecological and physiological problemsfor homeotherms that require adaptations to cope with severeand less predictable physical factors while at the same timecontinuing to have to cope with the biological ones, such ascompetition and predation. The stress axis plays a central rolein these adaptations and I discuss the range of solutions thatbirds and mammals have evolved. The stress response in theseanimals is not static when a challenge occurs, but may be modulateddepending on the biological function during the annual cycle(breeding versus nonbreeding), either under-responding to permitreproduction (some song birds) or responding vigorously, yetnot having this compromise reproduction (Arctic ground squirrels).Both may trade off survival for reproduction. In contrast, thesnowshoe hare shows the expected stress response to chronichigh predation risk over 2–3 years: body resources aregeared to survival and reproduction is inhibited. Two long term,persistent, and pervasive changes will confront northern birdsand mammals in the 21st century: global change and persistentorganochlorine pollutants (POPs). These may result in eitheradaptations or shifts in distribution and abundance. For theformer, latitudinal variation in the stress axis may help songbirds respond rapidly; population variation in the stress axisresponse is unknown in northern mammals and relatively sedentarymammals may be unable to shift their distribution rapidly toadjust major climate shifts. For the latter, the few POPs studiesthat have examined the stress axis indicate marked negativeeffects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号