首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the response of chondrocytes to topographical cues and chemical patterns could provide invaluable information to advance the repair of chondral lesions. We studied the response of primary chondrocytes to nano- and micro-grooved surfaces, and sulphated hyaluronic acid (HyalS). Cells were grown on grooves ranging from 80 nm to 9 microm in depth, and from 2 microm to 20 microm in width. Observations showed that the cells did not spread appreciably on any groove size, or alter morphology or F-actin organization, although cells showed accelerated movement on 750 nm deep grooves in comparison to flat surfaces. On chemical patterns, the cells migrated onto, and preferentially attached to, HyalS and showed a greater degree of spreading and F-actin re-arrangement. This study shows that 750 nm deep grooves and sulphated hyaluronic acid elicit responses from primary chondrocytes, and this could have implications for the future direction of cartilage reconstruction and orthopaedic treatments in general.  相似文献   

2.
Both chondrocytes and mensenchymal stem cells (MSCs) are the most used cell sources for cartilage tissue engineering. However, monolayer expansion to obtain sufficient cells leads to a rapid chondrocyte dedifferentiation and a subsequent ancillary reduced ability of MSCs to differentiate into chondrocytes, thus limiting their application in cartilage repair. The aim of this study was to investigate the influence of the monolayer expansion on the immunophenotype and the gene expression profile of both cell types, and to find the appropriate compromise between monolayer expansion and the remaining chondrogenic characteristics. To this end, human chondrocytes, isolated enzymatically from femoral head slice, and human MSCs, derived from bone marrow, were maintained in monolayer culture up to passage 5. The respective expressions of cell surface markers (CD34, CD45, CD73, CD90, CD105, CD166) and several chondrogenic-related genes for each passage (P0-P5) of those cells were then analyzed using flow cytometry and quantitative real-time PCR, respectively. Flow cytometry analyses showed that, during the monolayer expansion, some qualitative and quantitative regulations occur for the expression of cell surface markers. A rapid increase in mRNA expression of type 1 collagen occurs whereas a significant decrease of type 2 collagen and Sox 9 was observed in chondrocytes through the successive passages. On the other hand, the expansion did not induced obvious change in MSCs gene expression. In conclusion, our results suggest that passage 1 might be the up-limit for chondrocytes in order to achieve their subsequent redifferentiation in 3D scaffold. Nevertheless, MSCs could be expanded in monolayer until passage 5 without loosing their undifferentiated phenotypes.  相似文献   

3.
This paper presents a new approach to study cell migration. Human tendon fibroblasts were plated on silicone membranes coated with 10 microg/ml ProNectin-F. The silicone surfaces were micro-fabricated with parallel microgrooves, with 10 microm ridge and groove width, and 3 microm groove depth. Fibroblasts grown in the microgrooves had an elongated shape and oriented along the microgroove direction. They also moved along the same direction instead of "random walk" when cells migrate on smooth culture surfaces. In response to TGF-beta1 (5 ng/ml) treatment, these fibroblasts on the microgrooved surfaces were differentiated into myofibroblasts, as judged by an elevated expression of alpha-smooth muscle actin (alpha-SMA), a specific marker for myofibroblasts. Moreover, these myofibroblasts were found to be approximately 30% less motile compared to that of untreated fibroblasts. Thus, use of microgrooved surface may be an effective approach to detect difference in cell motility because cell migration on the microgrooved surface is one dimensional and hence easier to be quantified than two-dimensional random movement on conventional smooth culture surfaces.  相似文献   

4.
Recent advances in tissue engineering offer considerable promise for the repair of focal lesions in articular cartilage. Here we describe (1) the macromolecular organization of tissue-engineered neocartilage grafts at light and electron microscopic levels, (2) their in vitro development, and (3) the effect of chondrocyte dedifferentiation, induced by monolayer expansion, on their resultant structure. We show that grafts produced from primary cultures of chondrocytes are hyaline in appearance with identifiable zonal strata as evidenced by cell morphology, matrix organization, and immunohistochemical composition. Like native articular cartilage, their surface zone contains type I collagen, surface zone proteoglycan, biglycan and decorin with type II collagen, aggrecan, chondroitin sulfate, chondroitin-4-sulfate, and keratan sulfate, becoming more prominent with depth. Assessment of cell viability by Live/Dead staining and cell-cycle analysis with BrDU suggest that the in vitro tissue has a high cellular turnover and develops through both appositional and interstitial growth mechanisms. Meanwhile, cell-tracker studies with CMFDA (5-chloromethyl-fluorescein diacetate) demonstrate that cell sorting in vitro is not involved in their zonal organization. Finally, passage expansion of chondrocytes in monolayer culture causes progressive reductions in graft thickness, loss of zonal architecture, and a more fibrocartilaginous tissue histology, consistent with a dedifferentiating chondrocyte phenotype.  相似文献   

5.
Advances in micropatterning methodologies have made it possible to create structures with precise architecture on the surface of cell culture substrata. We applied these techniques to fabricate microfeatures (15-65 microm wide; 40 microm deep) on the surface of a flexible, biocompatible polysaccharide gel. The micropatterned polymer gels were subsequently applied as scaffolds for chondrocyte culture and proved effective in maintaining key aspects of the chondrogenic phenotype. These were rounded cell morphology and a positive and statistically significant (p < 0.0001) immunofluorescence assay for the production of type II collagen throughout the maximum culture time of 10 days after cell seeding. Further, cells housed within individual surface features were observed to proliferate, while serial application of chondrocytes resulted in the formation of cellular aggregates. These methods represent a novel approach to the problem of engineering reparative cartilage in vitro.  相似文献   

6.
Nanofabricated model surfaces and digital image analysis of cell shape were used to address the importance of a continuous sharp edge in the alignment of cells to shallow surface grooves. The grooved model surfaces had either continuous or discontinuous edges of various depths (40-400 nm) but identical surface chemistry and groove/ridge dimensions (15 microm wide). Epithelial cells were cultured on the model surfaces for 10 and 24 h. Fluorescence microscopy combined with image analysis were used to quantify cell area and alignment and to make cell shape classifications of individual cells. The degrees of alignment of cells and the percentages of elongated cell classes increased with groove depth on samples with continuous grooves. Two main differences, with regard to cell response, were observed between the continuous and discontinuous grooved surfaces. First, significantly fewer cells aligned to surface grooves with discontinuous edges than to grooves with continuous edges. Second, there were lower percentages of the elongated cell classes on discontinuous grooves than on continuous ones. We concluded that grooved surfaces with continuous edges are more potent in aligning and inducing elongated cells. The results from the present study suggest that a mechanism of alignment involving orientation along a continuous edge is likely.  相似文献   

7.
Silicon wafers bearing microgrooved surfaces with various groove width, spacing, and depth were fabricated using microlithography. The orientation of rat Schwann cells along the direction of the grooves was measured at 24 h after seeding the cells. When the width/spacing of the grooves was fixed at 10/10 microm, the mean percentage of aligned cells was 12% for grooves of 0.5 microm depth, 15% for those of 1 microm depth, and 26% for those of 1.5 microm depth (P < 0.05). When the depth of grooves was fixed at 1.5 microm, the mean percentage of aligned cells increased from 26% for width/spacing 10/10 microm, to 33% for 10/20 microm or 20/10 microm, and up to 41% for 20/20 microm (P < 0.05). On the surface with grooves of width/spacing/depth = 20/20/1.5 microm and modified by laminin, the alignment at 24 h approached 60%, versus 51% for collagen-coated surface and 41% for uncoated surface (P < 0.05). At 48 h after seeding, about 66% of the cells were aligned on the above laminin-modified surface. The groove depth influenced orientation of Schwann cells significantly. The cell alignment on 20/20/3 microm microgrooved poly(D,L-lactide-co-glycolide) 90:10 (PLGA) surfaces transferred from silicon reached 72% at 48 h and 92% at 72 h (P < 0.05). Coating this surface with laminin enhanced cell alignment only in short term (67% vs. 62% at 24 h, P < 0.05). The cell alignment guided by surface microgrooves was time dependent.  相似文献   

8.
Chondrocytes cultivated in monolayer rapidly divide and lose their morphological and biochemical characteristics, whereas they maintain their phenotype for long periods of time when they are cultivated in alginate beads. Because cartilage has a low cellularity and is difficult to obtain in large quantities, the number of available cells often becomes a limiting factor in studies of chondrocyte biology. Therefore, we explored the possibility of restoring the differentiated properties of chondrocytes by cultivating them in alginate beads after two multiplication passages in monolayer. This resulted in the reexpression of the two main markers of differentiated chondrocytes: Aggrecan and type II collagen gene expression was strongly reinduced from day 4 after alginate inclusion and paralleled protein expression. However, 2 weeks were necessary for total suppression of type I and III collagen synthesis, indicators of a modulated phenotype. Interleukin-1β, a cytokine that is present in the synovial fluid of rheumatoid arthritis patients, induces many metabolic changes on the chondrocyte biology. Compared with cells in primary culture, the production of nitric oxide and 92-kDa gelatinase in response to interleukin-1β was impaired in cells at passage 2 in monolayer but was fully recovered after their culture in alginate beads for 2 weeks. This suggests that the effects of interleukin-1β on cartilage depend on the differentiation state of chondrocytes. This makes the culture in alginate beads a relevant model for the study of chondrocyte biology in the presence of interleukin-1β and other mediators of cartilage destruction in rheumatoid arthritis and osteoarthrosis. J. Cell. Physiol. 176:303–313, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
Microfluidic bioreactors have been shown valuable for various cellular applications. The use of micro-wells/grooves bioreactors, in which micro-topographical features are used to protect sensitive cells from the detrimental effects of fluidic shear stress, is a promising approach to culture sensitive cells in these perfusion microsystems. However, such devices exhibit substantially different fluid dynamics and mass transport characteristics compared to conventional planar microchannel reactors. In order to properly design and optimize these systems, fluid and mass transport issues playing a key role in microscale bioreactors should be adequately addressed. The present work is a parametric study of micro-groove/micro-well microchannel bioreactors. Operation conditions and design parameters were theoretically examined via a numerical model. The complex flow pattern obtained at grooves of various depths was studied and the shear protection factor compared to planar microchannels was evaluated. 3D flow simulations were preformed in order to examine the shear protection factor in micro-wells, which were found to have similar attributes as the grooves. The oxygen mass transport problem, which is coupled to the fluid mechanics problem, was solved for various groove geometries and for several cell types, assuming a defined shear stress limitation. It is shown that by optimizing the groove depth, the groove bioreactor may be used to effectively maximize the number of cells cultured within it or to minimize the oxygen gradient existing in such devices. Moreover, for sensitive cells having a high oxygen demand (e.g., hepatocytes) or low endurance to shear (e.g., human embryonic stem cells), results show that the use of grooves is an enabling technology, since under the same physical conditions the cells cannot be cultured for long periods of time in a planar microchannel. In addition to the theoretical model findings, the culture of human foreskin fibroblasts in groove (30 microm depth) and well bioreactors (35 microm depth) was experimentally examined at various flow rates of medium perfusion and compared to cell culture in regular flat microchannels. It was shown that the wells and the grooves enable a one order of magnitude increase in the maximum perfusion rate compared to planar microchannels. Altogether, the study demonstrates that the proper design and use of microgroove/well bioreactors may be highly beneficial for cell culture assays.  相似文献   

10.
Cultivation of phenotypically stable auricular chondrocytes will have applications in autologous chondrocyte transplantation and reconstructive surgery of cartilage. Chondrocytes grown in monolayer culture rapidly dedifferentiate assuming a fibroblast-like morphology and lose their cartilage-specific pattern of gene expression. Three-dimensional high-density culture models mimic more closely the in vivo conditions of cartilage. Therefore, this study was undertaken to test whether the high-density cultures might serve as a suitable model system to acquire phenotypically and functionally differentiated auricular chondrocytes from porcine cartilage. Freshly isolated porcine auricular chondrocytes were cultured for 7 passages in monolayer culture. From each passage (passage 0 and 1-7) cells were introduced to high-density cultures and examined by transmission electron microscopy. Western blotting was used to analyse the expression of cartilage-specific markers, such as collagen type II and cartilage specific proteoglycan, fibronectin, cell adhesion and signal transduction receptor beta1-integrin, matrix metalloproteinases (MMP-9, MMP-13), cyclo-oxygenase (COX)-2 and the apoptosis commitment marker, activated caspase-3. When dedifferentiated auricular chondrocytes from monolayer passages 0-4 were cultured in high-density culture, they recovered their chondrocytic phenotype and formed cartilage nodules surrounded by fibroblast-like cells and synthesised collagen type II, proteoglycans, fibronectin and beta1-integrins. However, chondrocytes from monolayer passages 5-7 did not redifferentiate to chondrocytes even when transferred to high-density culture, and did not synthesize a chondrocyte-specific extracellular matrix. Instead, they produced increasing amounts of MMP-9, MMP-13, COX-2, activated caspase-3 and underwent apoptosis. Three-dimensional high-density cultures may therefore be used to obtain sufficient quantities of fully differentiated auricular chondrocytes for autologous chondrocyte transplantation and reconstructive plastic surgery.  相似文献   

11.
Cell lines were established from rabbit articular chondrocytes following transfection with a plasmid encoding SV40 early function genes. This resulted in cell immortalization (130 passages have been completed for the oldest cell line) with acquisition of characteristics of partial transformation such as reduced serum requirements for normal and clonal growth. The immortalized chondrocytes, called SVRAC, did not form multilayer foci when maintained in postconfluent culture. Their ability to form colonies in soft agar was not increased in comparison with normal chondrocytes, but they were weakly tumorigenic in nude mice. SVRAC lost the ability to synthesize type II collagen and Alcian blue-stainable matrix, which are markers of the differentiated chondrocyte phenotype, and synthesized predominantly type I collagen. Studies of collagen gene expression showed that pro alpha 1 (II) mRNA was undetectable, whereas pro alpha 1 (I) collagen mRNA was expressed even in late passage cultures. Unlike normal dedifferentiated chondrocytes, SVRAC were unable to re-express the differentiated phenotype in response to tridimensional culture or microfilament depolymerization. Cell lines obtained from chondrocytes transfected either in primary culture or just after release of cells from cartilage displayed the same behaviour. Thus SV40 early genes were able to immortalize rabbit articular chondrocytes, but the resulting cell lines displayed an apparently irreversibly dedifferentiated phenotype. These cell lines can be used as models to identify regulatory pathways that are required for the maintenance or reexpression of differentiated function in chondrocytes.  相似文献   

12.
Transplantation of bone marrow mesenchymal stem cells (MSC), chondrocytes, osteoblasts, or muscle cells promotes regeneration. However, these cells adhere poorly to some scaffolds--depending upon the scaffold material--and are often damaged by proteases or mechanical stimuli at site of transplantation. We found, however, that MSC, chondrocytes, and osteoblasts--along with some other cells--that were exposed to phaseolus vulgaris erythroagglutinin (PHA-E) or concanavalin A (ConA) increased their adhesion capacity on plastic tissue culture dishes and on plates of hydroxyapatite, titanium and poly-DL-lactic-co-glycolic acid (PLGA), and that these cells, moreover, built up resistance to proteases and/or mechanical stimuli. Thus, lectins may have great potential in tissue engineering and cell therapy.  相似文献   

13.
Auricular cartilage is an attractive potential source of cells for many tissue engineering applications. However, there are several requirements that have to be fulfilled in order to develop a suitable tissue engineered implant. Animal experiments serve as important tools for validating novel concepts of cartilage regeneration; therefore rabbit auricular chondrocytes were studied. Various parameters including isolation procedures, passage number, rate of proliferation and gene expression profile for major extracellular matrix components were evaluated in order to assess the potential use of elastic chondrocytes for tissue engineering. Chondrocytes were isolated from rabbit ear cartilage and grown in monolayer cultures over four passages. Yields of harvested cells and proliferation were analysed from the digestion step to the fourth passage, and changes in phenotype were monitored. The proliferation capacity of cell cultures decreased during cultivation and was accompanied by enlargement of cells, this phenomenon being especially evident in the third and fourth passages. The expression of cartilage specific genes for collagen type II, aggrecan and cartilage non-specific collagen type I was determined. The mRNA levels for all three genes were obviously lower in the primo culture than immediately after isolation. During subsequent cultivation the expression of collagen type II decreased further, while there were only slight changes in expression of aggrecan and collagen type I. This study provides a valuable basis for testing of different tissue engineering applications in rabbit model, where auricular chondrocytes are considered as cell source.  相似文献   

14.
The migration of vascular endothelial cells under flow can be modulated by the addition of chemical or mechanical stimuli. The aim of this study was to investigate how topographic cues derived from a substrate containing three-dimensional microtopography interact with fluid shear stress in directing endothelial cell migration. Subconfluent bovine aortic endothelial cells were seeded on fibronectin-coated poly(dimethylsiloxane) substrates patterned with a combinatorial array of parallel and orthogonal microgrooves ranging from 2 to 5 microm in width at a constant depth of 1 microm. During a 4-h time-lapse observation in the absence of flow, the majority of the prealigned cells migrated parallel to the grooves with the distribution of their focal adhesions (FAs) depending on the groove width. No change in this migratory pattern was observed after the cells were exposed to moderate shear stress (13.5 dyn/cm(2)), irrespective of groove direction with respect to flow. After 4-h exposure to high shear stress (58 dyn/cm(2)) parallel to the grooves, the cells continued to migrate in the direction of both grooves and flow. By contrast, when microgrooves were oriented perpendicular to flow, most cells migrated orthogonal to the grooves and downstream with flow. Despite the change in the migration direction of the cells under high shear stress, most FAs and actin microfilaments maintained their original alignment parallel to the grooves, suggesting that topographic cues were more effective than those derived from shear stress in guiding the orientation of cytoskeletal and adhesion proteins during the initial exposure to flow.  相似文献   

15.
There are many variables to be considered in studying how cells interact with 3D scaffolds used in tissue engineering. In this study we investigated the influence of the fiber diameter and interfiber spaces of 3D electrospun fiber scaffolds on the behavior of human dermal fibroblasts. Fibers of two dissimilar model materials, polystyrene and poly-L-lactic acid, with a broad range of diameters were constructed in a specifically developed 3D cell culture system. When fibroblasts were introduced to freestanding fibers, and encouraged to "walk the plank," a minimum fiber diameter of 10 microm was observed for cell adhesion and migration, irrespective of fiber material chemistry. A distance between fibers of up to 200 microm was also observed to be the maximum gap that could be bridged by cell aggregates--a behavior not seen in conventional 2D culture. This approach has identified some basic micro-architectural parameters for electrospun scaffold design and some key differences in fibroblast growth in 3D. We suggest the findings will be of value for optimizing the integration of cells in these scaffolds for skin tissue engineering.  相似文献   

16.
This study evaluated in vitro the differences in morphological behaviour between fibroblast cultured on smooth and microgrooved substrata (groove depth: 0.5 microm, width: 1, 2, 5, and 10 microm), which were subjected to simulated microgravity. The aim of the study was to clarify which of these parameters was more dominant to determine cell behaviour. Morphological characteristics were investigated using scanning electron microscopy and fluorescence microscopy in order to obtain qualitative information on cell alignment and area. Confocal laser scanning microscopy visualised distribution of actin filaments and focal adhesion points. Finally, expression of collagen type I, fibronectin, and alpha1- and beta1-integrin were investigated by PCR. Microscopy and image analysis showed that the fibroblasts aligned along the groove direction on all textured surfaces. On the smooth substrata, cells had spread out in a random fashion. The alignment of cells cultured on grooved surfaces decreased under simulated microgravity, especially after 24 h of culturing. Cell surface area on grooved substrata were significantly smaller than on smooth substrata, but simulated microgravity on the grooved groups resulted in an enlargement of cell area. ANOVA was performed on all main parameters: topography, gravity force, and time. In this analysis, all parameters proved significant. In addition, gene levels were reduced by microgravity particularly those of beta1-integrin and fibronectin. From our data it is concluded that the fibroblasts primarily adjust their shape according to morphological environmental cues like substratum surface whilst a secondary, but significant, role is played by microgravity conditions.  相似文献   

17.
目的:近年来研究表明,关节软骨细胞凋亡在骨关节炎发病过程中起到了重要的作用,本文旨在探讨microma-15a模拟物对于原代人膝关节软骨细胞增殖与凋亡的影响。方法:取人外伤性截肢后的膝关节软骨,采用双酶消化法分离获得人膝关节软骨细胞,并进行体外培养,通过甲苯胺蓝染色和II型胶原免疫细胞化学染色进行软骨细胞鉴定。将培养的软骨细胞传代后取第l代细胞,分为实验组和对照组,实验组采用mir.15a模拟物(has.mir-15amimics)转染软骨细胞,上调软骨细胞内mir-15a的表达量;对照组分为阴性对照组、空白对照组。采用MTT法测定细胞增殖曲线,流式细胞仪测定细胞凋亡率。结果:原代细胞中细胞呈多角形、圆形与梭型,贴壁生长;甲苯胺蓝染色胞质呈深蓝色,II型胶原染色胞质呈黄褐色,为特异性染色。经统计学分析,实验组与对照组相比增殖速率明显下降(P〈0.05)。实验组凋亡率(7.13%±0.57)与阴性对照组凋亡率(2.66%±0.15)相比明显增高(P〈0.05)。结论:采用双酶消化法成功分离并培养具有生物学特性的原代人膝关节软骨细胞,通过转染mir-15a模拟物外源性增加关节软骨细胞内mir.15a表达量可显著促进其凋亡并抑制其增殖,为阐明骨关节炎发病机制提供了新的理论依据,为’临床治疗提供了新的靶点。  相似文献   

18.
Cartilaginous gene expression decreased when chondrocytes were expanded on cell-culture plates. Understanding the dedifferentiation mechanism may provide valuable insight into cartilage tissue engineering. Here, we demonstrated the relationship between the nuclear shape and gene expression during in vitro expansion culture of chondrocytes. Specifically, the projected nuclear area increased and cartilaginous gene expressions decreased during in vitro expansion culture. When the nuclear deformation was recovered by cytochalasin D treatment, aggrecan expression was up-regulated and type I collagen (Col1a2) expression was down-regulated. These results suggest that nuclear deformation may be one of the mechanisms for chondrocyte dedifferentiation during in vitro expansion culture.  相似文献   

19.
目的通过牛肾细胞在两种不同载体中培养效果的比较,为牛肾细胞在细胞工厂中规模化生产提供真实的、有力的支持。方法不同代次牛肾细胞在两种载体中经过相同培养条件进行培养。结果实验中原代牛肾细胞在细胞工厂接种密度为5.5×104/cm2左右,在15 L转瓶接种密度为9.0×104/cm2左右。一代牛肾细胞在细胞工厂接种密度为6.5×104/cm2左右,在15 L转瓶接种密度为10×104/cm2左右。二代牛肾细胞在细胞工厂接种密度为7.0×104/cm2左右,在15 L转瓶接种密度为14×104/cm2左右。两种载体中牛肾细胞生长状况均能达到培养要求。结论细胞工厂能在有限的空间内利用最大限度的培养表面培养牛肾细胞,不仅节约了传代前的细胞用量,而且提高了培养后的细胞产量。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号