首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Staphylococcus warneri strain EX17 produces three lipases with different molecular weights of 28, 30, and 45 kDa. The 45 kDa fraction (SWL-45) has been purified from crude protein extracts by one chromatographic step based on the selective adsorption of this lipase by interfacial activation on different hydrophobic supports at low ionic strength. The adsorption of SWL-45 on octyl-Sepharose increased the enzyme activity by 60%, but the other lipases were also adsorbed on this support. Using butyl-Toyopearl, which is a lesser hydrophobic support, the purification factor was close to 20, and the only protein band detected on the sodium dodecyl sulfate-polyacrylamide electrophoresis analysis gel was that corresponding to the SWL-45, which could be easily desorbed from the support by incubation with triton X-100, producing a purified enzyme. SWL-45 was immobilized under very mild conditions on cyanogen bromide Sepharose, showing similar activities and stability as for its soluble form but without intermolecular interaction. The effects of different detergents over the activity of the immobilized SWL-45 were analyzed, which was hyperactivated by factors of 1.3 and 2.5 with 0.01% Tween 80 and 0.1% Triton X-100, respectively, while ionic detergents produced detrimental effects on the enzyme activity even at very low concentrations. Optimal reaction conditions and the effect of other additives on the enzyme activity were also investigated.  相似文献   

2.
Lipases are the most widely used enzymes in biocatalysis, and the most utilized method for enzyme immobilization is using hydrophobic supports at low ionic strength. This method allows the one step immobilization, purification, stabilization, and hyperactivation of lipases, and that is the main cause of their popularity. This review focuses on these lipase immobilization supports. First, the advantages of these supports for lipase immobilization will be presented and the likeliest immobilization mechanism (interfacial activation on the support surface) will be revised. Then, its main shortcoming will be discussed: enzyme desorption under certain conditions (such as high temperature, presence of cosolvents or detergent molecules). Methods to overcome this problem include physical or chemical crosslinking of the immobilized enzyme molecules or using heterofunctional supports. Thus, supports containing hydrophobic acyl chain plus epoxy, glutaraldehyde, ionic, vinylsulfone or glyoxyl groups have been designed. This prevents enzyme desorption and improved enzyme stability, but it may have some limitations, that will be discussed and some additional solutions will be proposed (e.g., chemical amination of the enzyme to have a full covalent enzyme-support reaction). These immobilized lipases may be subject to unfolding and refolding strategies to reactivate inactivated enzymes. Finally, these biocatalysts have been used in new strategies for enzyme coimmobilization, where the most stable enzyme could be reutilized after desorption of the least stable one after its inactivation.  相似文献   

3.
陈巍  詹佳  余川  魏炜 《工业微生物》2012,42(1):68-73
从黑曲霉发酵液中经硫酸铵分级沉淀,Phenyl-Sepharose疏水柱层析,DEAE-Sepharose 4B阴离子交换柱得到电泳纯的脂肪酶,纯化倍数达10倍,回收率50%。对脂肪酶的性质分析表明:该酶分子质量约为35kDa,最适温度和最适pH分别为37℃和9.5,50℃以下和pH6.0~11.0之间保持稳定,属于碱性脂肪酶。Mg^2+、Ca^2+、Cu^2+、Zn^2+、Co^2+、Mn2^+对该酶有激活作用,而Al^3+、Fe^2+、Fe^3+对酶有严重抑制作用。变性剂盐酸胍和脲对其未见显著影响,而SDS强烈抑制其酶活。用不同氨基酸修饰剂对酶进行修饰,其中NBS和PMSF强烈抑制该酶活性,NBSF和DTT在低浓度下对酶活影响不大,2,3-丁二酮在高浓度下影响其活性。外加稳定剂如NaCl、PEG、甘油、山梨醇、海藻酸钠,均可不同程度的延长脂肪酶的半衰期。在一定质量比条件下,该酶有良好的抗蛋白酶性质。  相似文献   

4.
In this study, we have prepared a hydrophobic cryogel for the chromatographic separation of lipase from its aqueous solutions including single protein and protein mixture and also Yarrowia lipolytica cell extract. N‐methacryloyl‐(l )‐phenylalanine methyl ester was used as a monomer to provide the hydrophobic character to the prepared cryogels. The highest adsorption capacity was observed at pH 5.0 at 0.5 mL min?1 flow rate. The chromatographic separation of lipase was achieved from a binary mixture of lipase:bovine serum albumin (BSA) and lipase:lysozyme, and was also achieved from triple‐mixture of lipase:lysozyme:BSA by using fast protein liquid chromatography. Finally, lipase purification was performed from Yarrowia lipolytica cell extract used as a natural source. These studies have shown that the hydrophobic cryogel has good chromatographic performance for the separation and purification of lipase not only from aqueous solution, but also from cell extract as a natural source of lipase. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:376–382, 2014  相似文献   

5.
Lipase A from Candida antarctica (CALA, commercialized as Novocor ADL) was immobilized on octyl-agarose, which is a very useful support for lipase immobilization, and coated with polyethylenimine to improve the stability. The performance was compared to that of the form B of the enzyme (CALB) immobilized on the same support, as both enzymes are among the most popular ones used in biocatalysis. CALA immobilization produced a significant increase in enzyme activity vs. p-nitrophenyl butyrate (pNPB) (by a factor of seven), and the coating with PEI did not have a significant effect on enzyme activity. CALB reduced its activity slightly after enzyme immobilization. Octyl-CALA was less stable than octyl-CALB at pH 9 and more stable at pH 5 and, more clearly, at pH 7. PEI coating only increased octyl-CALA stability at pH 9. In organic solvents, CALB had much better stability in methanol and was similarly stable in acetonitrile or dioxane. In these systems, the PEI coating of octyl-CALA permitted some stabilization. While octyl-CALA was more active vs. pNPB, octyl-CALB was much more active vs. mandelic esters or triacetin. Thus, depending on the specific reaction and the conditions, CALA or CALB may offer different advantages and drawbacks. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2735, 2019  相似文献   

6.
The Langmuir model fitted well the adsorption isotherms of lipase on the hydrophobic resin. The model parameters, Q m and k d, were affected by NaCl concentration: Q m increased from 31 to 80 U g–1 resin, and k d changed from 9.4 to 3 U ml–1. Column modelling and the simulation data were compared with the experimental data with good agreement. The highest achieved column efficiency was 71%.  相似文献   

7.
A novel strain of Rhizopus oryzae WPG secretes a noninduced lipase (ROLw) in the culture medium; purified ROLw is a protein of 29 kDa, the 45 N-terminal amino acid residues were sequenced, this sequence is very homologous to Rhizopus delemar lipase (RDL), Rhizopus niveus lipase (RNL) and R. oryzae lipase (ROL29) sequences; the cloning and sequencing of the part of the gene encoding the mature ROLw, shows two nucleotides differences with RDL, RNL and ROL29 sequences corresponding to the change of the residues 134 and 200; ROLw does not present the interfacial activation phenomenon when using tripropionin or vinyl propionate as substrates; the lipase activity is maximal at pH 8 and at 37 degrees C, specific activities of 3500 or 900 U mg(-1) were measured at 37 degrees C and at pH 8, using olive oil emulsion or tributyrin as substrates, respectively; ROLw is unable to hydrolyse triacylglycerols in the presence of high concentration of bile salts; it is a serine enzyme as it is inhibited by tetrahydrolipstatin and was stable between pH 5 and pH 8.  相似文献   

8.
A lipase from Bacillus thermocatenulatus (BTL2) cloned in E. coli has been purified using a very simple method: interfacial activation on a hydrophobic support followed by desorption with Triton. Only one band was detected by SDS-PAGE. The pure enzyme was immobilized using different methodologies. BTL2 adsorbed on a hydrophobic support (octadecyl-Sepabeads) exhibited a hyperactivation with respect to the soluble enzyme, whereas the other immobilized preparations suffered a slight decrease in the expressed activity. The soluble enzyme was very stable, but all immobilized preparations were much more stable than the soluble enzyme, the octadecyl-Sepabeads-BTL2 preparation being the most stable one in all conditions (high temperature or in the presence of organic cosolvents), maintaining 100% of the activity at 65 degrees C or 30% of dioxane and 45 degrees C after several days of incubation. The glyoxyl preparation, the second more stable, retained 80% of the initial activity after 2 days, respectively. The adsorption of this thermophilic lipase on octadecyl-Sepabeads permitted an increase in the optimal temperature of the enzyme of 10 degrees C.  相似文献   

9.
Very weak protein-protein interactions are very difficult to detect because these complexes could be under the detection limit or they tend to dissociate. Here, using as a model the antibody-antigen interaction weaken by the presence of dioxane, we have shown a strategy for the protein complexes purification by selective adsorption of the associated proteins. This strategy is based on the use of poorly activated anionic exchanger supports to selectively adsorb large complexes. This selective adsorption of the associated proteins shifted the association equilibrium of the soluble proteins toward the associated form. Thus, in the presence of 15% v/v dioxane, a concentration that is able to almost fully break the immunocomplex (less that 3% of the immunocomplex appeared associated when soluble antigen-antibody mixture was cross-linked with aldehyde-dextran), we can obtain more than 90% of the fully pure immunocomplex from the non-associated protein, adsorbed on anionic exchanger supports having a very low activation. This simple strategy may be a very useful tool to solve one of the most relevant challenges in the modern proteomics, the detection of very weak protein-protein interactions.  相似文献   

10.
Microporous polymer supports for the immobilization of lipase have been prepared by the polymerization of a concentrated emulsion precursor. The concentrated emulsion consists of a mixture of styrene and divinyl-benzene containing a suitable surfactant and an initiator as the continuous phase and water as the dispersed phase. The volume fraction of the latter phase was greater than 0.74, which is the volume fraction of the dispersed phase for the most compact arrangement of spheres of equal radius. The lipase from Candida rugosa has been immobilized on the internal surface of the hydrophobic microporous poly(styrene-divinyl benzene) supports and used as biocatalysts for the hydrolysis of triacylglycerides. The effects of the amount of surfactant, of the molar ratio of divinylbenzene/styrene in the continuous phase, and of the aquaphilicity of the supports on the adsorption, activity, and stability of the immobilized lipase have been investigated. The microporous poly(styrene-divinylbenzene) adsorbents constitute excellent supports for lipase because both the amount adsorbed is large and the rate of enzymatic reaction per molecule of lipase is higher for the immobilized enzyme than for the free one. (c) 1993 John Wiley & Sons, Inc.  相似文献   

11.
This paper shows that the properties of lipase B from Candida antarctica (CAL-B) may be easily modulated using different hydrophobic supports to immobilize it (octyl and butyl-agarose, octadecyl-Sepabeads or Lewatit). CAL-B could be fully desorbed from the supports by just incubating the biocatalyst with Triton X-100, although the concentration of detergent necessary was to fully desorb the enzyme varied with the support employed (from 1% for butyl-agarose to 4% for octadecyl-Sepabeads), suggesting that in all cases, the main reason for the enzyme immobilization was hydrophobic interactions. Lewatit VP OC 1600 yielded very different results in terms of activity, selectivity or enantioselectivity in the hydrolysis of rac-2-O-butyryl-2-phenylacetic acid (1) and 3-phenylglutaric acid dimethyl diester (3) compared to the other preparations. For example, in the hydrolysis of 1, Novozym 435 preferred the S-isomer (with an E value higher than 100) whereas all the other preparations preferred the R isomer (e.g. octyl-agarose-CAL-B with E value of 50). In the hydrolysis of 3, Novozym 435 gave S-3-phenylglutaric acid methyl ester with an ee higher than 99%, by coupling the first asymmetric hydrolysis to the enantiospecific hydrolysis of the monoester. CAL-B immobilized on Lewatit at low ionic strength not only behaved similarly to Novozym 435, but also presented some differences that should be due to the exact protocol of the enzyme immobilization in Novozym 435.  相似文献   

12.
Pseudomonas sp. lipase (PSL) was successfully immobilized on a novel hydrophobic polymer support through physical adsorption and the immobilized PSL was used for resolution of (R,S)-2-octanol with vinyl acetate as acyl donor. Enhanced activity and enantioselectivity were observed from the immobilized PSL compared with free PSL. The effects of reaction conditions such as temperature, water activity, substrate molar ratio and the amount of immobilized lipase were investigated. Under optimum conditions, the residual (S)-2-octanol was recovered with 99.5% enantiomeric excess at 52.9% conversion. The results also indicated that the immobilized PSL could maintain 94% of its initial activity even after reusing it five times.  相似文献   

13.
建立运用兔红细胞膜制备亲和树脂来纯化红芸豆中红细胞凝集素的方法。红芸豆经过浸提,(NH4)2SO4沉淀,红细胞膜亲和树脂吸附、洗脱得到红细胞凝集素(PHA-E)试样。采用电泳法测定其纯度、相对分子质量和等电点。用体积分数2%的兔红细胞悬液测定试样凝血活力及影响凝血因素。经PAGE分析PHA-E试样为单带,SDS-PAGE分析显示亚基相对分子质量为3.2×104,等电点为6.5。研究发现,促使50%兔红细胞产生凝集的试样蛋白质最低质量浓度为4μg/mL,单糖不影响PHA-E凝血活力,EDTA抑制其凝血活力,Zn2+促进其凝血。  相似文献   

14.
The adsorption properties, amount and specific activity of lipase D from Rhizopus delemar were investigated by employing a gold substrate modified with seven kinds of thiol monolayer. Quartz crystal microbalance measurements revealed that the amount of the enzyme adsorbed to the hydrophobic monolayers (e.g. benzenethiol) was much higher than that to the hydrophilic monolayers (e.g. 3-mercaptopropanoic acid). In contrast, lipase D adsorbed to the hydrophilic, 2-amino-1-ethanethiol monolayer showed the highest specific activity, the value being 300-fold higher than for the same enzyme dissolved in an aqueous medium.  相似文献   

15.
Aims:  To investigate the ability of the citric acid-producing strain Aspergillus niger ATCC 9142 to utilize the ethanol fermentation co-product corn distillers dried grains with solubles for citric acid production following various treatments.
Methods and Results:  The ability of A. niger ATCC 9142 to produce citric acid and biomass on the grains was examined using an enzyme assay and a gravimetric method, respectively. Fungal citric acid production after 240 h was higher on untreated grains than on autoclaved grains or acid-hydrolysed grains. Fungal biomass production was enhanced after autoclaving and acid-hydrolysis of the grains. Phosphate supplementation to the grains slightly stimulated citric acid production while methanol addition decreased its synthesis. Using the phosphate-supplemented grains, the optimal incubation temperature, initial moisture content of the grains and the length of fermentation time for ATCC 9142 citric acid production were determined to be 25°C, 82% and 240 h, respectively.
Conclusions:  A. niger ATCC 9142 synthesized citric acid on corn distillers dried grains with solubles. The phosphate-treated grains increased citric acid production by the strain.
Significance and Impact of the Study:  The ethanol fermentation co-product corn distillers dried grains with solubles could be useful commercially as a substrate for A. niger citric acid production.  相似文献   

16.
Pentylferulate synthesis was achieved at high yields (50–60%) with Aspergillus niger feruloyl esterase using a water-in-oil microemulsion system. The initial rate of synthesis decreased by 15–20% when the water content of the microemulsion was increased from 1.8 to 2.4% (v/v), although a concomitant decrease in conversion was not observed. The enzyme stability was significantly higher in the microemulsion than in an aqueous solution.  相似文献   

17.
Crude rapeseed oil and post-refining fatty acids were used as substrates for oxalic acid production by a mutant of Aspergillus niger. Both the final concentration and the yield of the product were highest at pH 4 to 5. With a medium containing 50 g lipids l–1, production reached a maximum of 68 g oxalic acid l–1 after 7 d. A high yield of the product (up to 1.4 g oxalic acid g–1 lipids consumed) was achieved with oil and fatty acids combined.  相似文献   

18.
Kinetics of cellulose hydrolysis with halostable cellulase from a marine Aspergillus niger was analyzed at different salinities. Cellulase activity in 8% NaCl solution was 1.43 folds higher than that in NaCl free solution. Half saturation constant, Km (15.6260 g/L) and the rate constant of deactivation, Kde (0.3369 g/L h) in 8% NaCl solution was lower than that (18.6364 g/L), 0.3754 (g/L h) in NaCl free solution. The maximum initial hydrolysis velocity, Vmax (25.5295 g/L h), in 8% NaCl solution was higher than that in NaCl free solution (25.0153 g/L h). High salinity increased affinity to the cellulase to the substrate and thermostability. Halostable cellulase from a marine Aspergillus niger was valuable for cellulose hydrolysis under high salinity conditions.  相似文献   

19.
A simple, rapid method for the preparation of pure microvillus membrane vesicles from pig small intestine is described. The method is based on the ability of agarose beads to adsorb selectively the impurities, mainly basolateral membrane fragments, from a microvillus vesicle preparation isolated by hypotonic lysis, Mg2+ aggregation of contaminants and differential centrifugation.  相似文献   

20.
During cationic bed adsorption (EBA), with cutinase with varying length tryptophan tags (WP)(2)and (WP)(4), 33% and 10% of adsorption capacity and 80% and 32% eluted specific activity were observed in relation to wild type (wt)-cutinase in the conventional process. Therefore, as the hydrophobicity of the protein increases, it is important to integrate the EBA step with a hydrophobic interaction chromatography (HIC) process. As the length of the hydrophobic tag-(WP) increases from n = 2 to n = 4, the purification factor obtained by HIC was 1.8 and 2.2-fold higher than wt-cutinase. However, the recovery yield obtained in HIC decreases substantially as the length of hydrophobic tag increases (97%, 84% and 70% for wt-cutinase, cutinase-(WP)(2) and cutinase-(WP)(4)). The integration of two purification steps, EBA followed by HIC, resulted in the highest overall purity level for cutinase-(WP)(2), and the highest overall recovery yield for wt-cutinase. When optimizing the design of a hydrophobic tag fused to a protein secreted by Saccharomyces cerevisiae it must be considered that the cultivation parameters could impair the downstream process, and consequently the optimum tag is not necessarily the one that presents the highest purification factor in HIC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号