首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the world of pathogen-host cell interactions, the autophagic pathway has been recently described as a component of the innate immune response against intracellular microorganisms. Indeed, some bacterial survival mechanisms are hampered when this process is activated. Mycobacterium tuberculosis infection of macrophages, for example, is impaired upon autophagy induction and the bacterial phagosomes are redirected to autophagosomes. On the other hand, pathogens like Coxiella burnetii are benefited by this cellular response and subvert the autophagy process resulting in a more efficient replication. We study at the molecular level these two different faces of the autophagy process in pathogen life in order to elucidate the intricate routes modulated by the microorganisms as survival strategies.  相似文献   

2.
细胞自噬是真核生物中一种高度保守的细胞内容物降解过程,在维持细胞的内环境稳定中起着重要作用。同时,自噬参与固有免疫系统对病原微生物的识别,以帮助吞噬细胞进行有效的吞噬作用并清除细胞内外的病原体。而病毒,尤其是RNA病毒,具有快速进化以应对宿主细胞中的变化的能力,能通过利用或抑制宿主细胞的自噬作用来为自身的复制服务。因此,针对自噬途径的药物筛选和治疗策略越来越成为抗病毒研究的热点。  相似文献   

3.
Pathogen recognition is the first and crucial step in innate immunity. Molecular families involved in the recognition of pathogens and activation of the innate immune responses in immunoreactive cells include the Toll-like receptor family in mammals and the peptidoglycan recognition protein (PGRP) family in Drosophila, which sense microorganisms in an extracellular or luminal compartment. Other emerging families are the intracellular recognition molecules for bacteria, such as nucleotide binding and oligomerization domain-like receptors in mammals and PGRP--LE in Drosophila, several of which have been shown to detect structures of bacterial peptidoglycan in the host cell cytosol. Exciting advances in recent studies on autophagy indicate that macroautophagy (referred to here as autophagy) is selectively induced by intracellular recognition molecules and has a crucial role in the elimination of intracellular pathogens, including bacteria, viruses and parasites. This review discusses recent studies related to intracellular recognition molecules and innate immune responses to intracellular pathogens, and highlights the role of autophagy in innate immunity.  相似文献   

4.
Autophagy is a major intracellular process for the degradation of cytosolic macromolecules and organelles in the lysosomes or vacuoles for the purposes of regulating cellular homeostasis and protein and organelle quality control. In complex metazoan organisms, autophagy is highly engaged during the immune responses through interfaces either directly with intracellular pathogens or indirectly with immune signalling molecules. Studies over the last decade or so have also revealed a number of important ways in which autophagy shapes plant innate immune responses. First, autophagy promotes defence‐associated hypersensitive cell death induced by avirulent or related pathogens, but restricts unnecessary or disease‐associated spread of cell death. This elaborate regulation of plant host cell death by autophagy is critical during plant immune responses to the types of plant pathogens that induce cell death, which include avirulent biotrophic pathogens and necrotrophic pathogens. Second, autophagy modulates defence responses regulated by salicylic acid and jasmonic acid, thereby influencing plant basal resistance to both biotrophic and necrotrophic pathogens. Third, there is an emerging role of autophagy in virus‐induced RNA silencing, either as an antiviral collaborator for targeted degradation of viral RNA silencing suppressors or an accomplice of viral RNA silencing suppressors for targeted degradation of key components of plant cellular RNA silencing machinery. In this review, we summarize this important progress and discuss the potential significance of the perplexing role of autophagy in plant innate immunity.  相似文献   

5.
The interplay between autophagy and intracellular pathogens is intricate as autophagy is an essential cellular response to fight against infections, whereas numerous microbes have developed strategies to escape this process or even exploit it to their own benefit. The fine tuned timing and/or selective molecular pathways involved in the induction of autophagy upon infections could be the cornerstone allowing cells to either control intracellular pathogens, or be invaded by them. We report here that measles virus infection induces successive autophagy signallings in permissive cells, via distinct and uncoupled molecular pathways. Immediately upon infection, attenuated measles virus induces a first transient wave of autophagy, via a pathway involving its cellular receptor CD46 and the scaffold protein GOPC. Soon after infection, a new autophagy signalling is initiated which requires viral replication and the expression of the non-structural measles virus protein C. Strikingly, this second autophagy signalling can be sustained overtime within infected cells, independently of the expression of C, but via a third autophagy input resulting from cell-cell fusion and the formation of syncytia. Whereas this sustained autophagy signalling leads to the autophagy degradation of cellular contents, viral proteins escape from degradation. Furthermore, this autophagy flux is ultimately exploited by measles virus to limit the death of infected cells and to improve viral particle formation. Whereas CD150 dependent virulent strains of measles virus are unable to induce the early CD46/GOPC dependent autophagy wave, they induce and exploit the late and sustained autophagy. Overall, our work describes distinct molecular pathways for an induction of self-beneficial sustained autophagy by measles virus.  相似文献   

6.
Sanjuan MA  Green DR 《Autophagy》2008,4(5):607-611
Autophagy is a conserved pathway that sequesters cytoplasmic material and delivers it to lysosomes for degradation. Digestion of portions of the cell interior plays a key role in the recycling of nutrients, remodeling, and disposal of superfluous organelles. Along with its metabolic function, autophagy is an important mechanism for innate immunity against invading bacteria and other pathogens. Multicellular organisms seem to have exploited autophagy to eliminate intracellular pathogens that would otherwise grow in the cytoplasm. Surprisingly, autophagy is involved in the response to extracellular pathogens as well, following their engulfment by conventional phagocytosis. Possible links between these two forms of cellular "eating" represent a new dimension in host defense.  相似文献   

7.
Many bacterial pathogens rely on an intracellular cycle to ensure their proliferation within infected hosts, through their ability to avoid or circumvent host bactericidal pathways. Recent evidence supports an increasingly important role for the autophagy pathway in innate immune defences against intracellular pathogens, as a mechanism of capture of either cytosol-adapted or vacuolar bacteria that redirect them to the lysosomal compartment for killing. Antibacterial autophagy, also referred to as xenophagy, involves selective recognition of intracellular bacteria and their targeting to the autophagic machinery for degradation. Here we review recent advances in our molecular understanding of these processes, and in how bacteria have adapted to avoid xenophagy or even take advantage of this innate immune process.  相似文献   

8.
Summary The threat caused by intracellular pathogens increases as conventional drag treatments are less and less effective against a wide range of microorganisms. Understanding the molecular mechanisms used by intracellular pathogens to avoid killing and degradation in their host cells is likely to point at new ways to threat infectious diseases. We discuss some of the strategies used by various microorganisms to avoid killing and degradation in phagolysosomes. Interestingly, it appears that microbes have a lot to teach us about the cell biology and molecular mechanisms of organelle sorting in macrophages.  相似文献   

9.
Ya-Qin Tan  Jing Zhang 《Autophagy》2017,13(2):225-236
Macroautophagy/autophagy is a conserved lysosomal degradation process essential for cell physiology and human health. By regulating apoptosis, inflammation, pathogen clearance, immune response and other cellular processes, autophagy acts as a modulator of pathogenesis and is a potential therapeutic target in diverse diseases. With regard to oral disease, autophagy can be problematic either when it is activated or impaired, because this process is involved in diverse functions, depending on the specific disease and its level of progression. In particular, activated autophagy functions as a cytoprotective mechanism under environmental stress conditions, which regulates tumor growth and mediates resistance to anticancer treatment in established tumors. During infections and inflammation, activated autophagy selectively delivers microbial antigens to the immune systems, and is therefore connected to the elimination of intracellular pathogens. Impaired autophagy contributes to oxidative stress, genomic instability, chronic tissue damage, inflammation and tumorigenesis, and is involved in aberrant bacterial clearance and immune priming. Hence, substantial progress in the study of autophagy provides new insights into the pathogenesis of oral diseases. This review outlines the mechanisms of autophagy, and highlights the emerging roles of this process in oral cancer, periapical lesions, periodontal diseases, and oral candidiasis.  相似文献   

10.
Yano T  Kurata S 《Autophagy》2008,4(7):958-960
Macroautophagy (referred to hereafter as autophagy) functions not only in self-digestion, but also in the killing and degradation of infectious pathogens in in vitro-cultured cells. Based on genetic manipulations of both the host, Drosophila and pathogen, Listeria monocytogenes, we recently reported that L. monocytogenes-induced autophagy is dependent on the recognition of the pathogen by the Drosophila pattern recognition protein, PGRP-LE. Autophagy and PGRP-LE are crucial for inhibition of the intracellular growth of bacteria in hemocytes, the target cells of L. monocytogenes infection in vivo. The importance of autophagy in the resistance of Drosophila against L. monocytogenes is further indicated in in vivo survival experiments. The signaling pathway(s) that induces autophagy by PGRP-LE is independent of the known immune signaling pathways, suggesting that another unidentified pathway(s) is involved. The results of the present study demonstrate that the induction of autophagy, as an innate immune response targeting intracellular pathogens, is activated by intracellular sensors through unidentified pathways.  相似文献   

11.
Autophagy is a conserved membrane-traffic pathway in eukaryotic cells that sequesters cytoplasmic components and delivers them to lysosomes. Recent research indicates that the degradation of undesirable or recyclable cytoplasmic components and organelles through autophagy plays a pivotal role as an intracellular surveillance system for recognition and eradication of pathogens that have invaded the cytoplasm. Many invasive bacteria, however, have highly evolved mechanisms to circumvent cellular autophagy. Indeed, recent reports describe intracellular pathogens as being capable of subverting or modifying autophagy activation and persisting within autophagosomes.  相似文献   

12.
自噬是一种高度保守的细胞内成分的降解过程,不仅维持细胞的代谢稳定,还与机体对抗各种病原菌感染有着密切关系。自噬能协助机体清除病原体,但有些细菌进化出多种策略干扰自噬信号通路或抑制自噬体与溶酶体融合形成自噬溶酶体来逃避自噬的降解,甚至利用自噬来促进其生长增殖。文中从自噬的分子机制出发,讨论多种致病菌与宿主细胞自噬关系的最新进展,以及自噬与病原菌感染的作用和意义,以期为病原菌感染导致的自噬研究提供参考。  相似文献   

13.
自噬是一种广泛存在于真核细胞中的溶酶体依赖性分解代谢途径,涉及细胞分化、饥饿耐受和免疫防御等生物学功能.其中,异体自噬被定义为真核细胞特异性识别并清除胞内病原微生物的过程,是免疫细胞行使宿主防御的重要方式.然而,许多病原微生物已经"开发"了特殊的毒力因子(包括效应蛋白质和表面蛋白质等),衍生出多种逃避或劫持自噬作用的策...  相似文献   

14.
Autophagy is responsible for the degradation of cytosolic components within eukaryotic cells. Interestingly, autophagy also appears to play a role in recognizing invading intracellular pathogens. Salmonella enterica serovar Typhimurium (S. Typhimurium) is an intracellular pathogen that normally resides and replicates within the Salmonella-containing vacuole (SCV). However, during in vitro infection a population of S. Typhimurium damage and escape from the SCV to enter the cytosol. We have observed that some intracellular S. Typhimurium are recognized by autophagy under in vitro infection conditions. Immunofluorescence studies revealed that autophagy recognizes the population of S. Typhimurium within damaged SCVs early after infection. The consequences of autophagic recognition of S. Typhimurium are still being elucidated, though a restrictive effect on intracellular bacterial replication has been demonstrated. Results of our in vitro infection studies are consistent with autophagy playing a role in cellular defense against S. Typhimurium that become exposed to the cytosol.  相似文献   

15.
《Autophagy》2013,9(3):156-158
Autophagy is responsible for the degradation of cytosolic components within eukaryotic cells. Interestingly, autophagy also appears to play a role in recognizing invading intracellular pathogens. Salmonella enterica serovar Typhimurium (S. Typhimurium) is an intracellular pathogen that normally resides and replicates within the Salmonella-containing vacuole (SCV). However, during in vitro infection a population of S. Typhimurium damage and escape from the SCV to enter the cytosol. We have observed that some intracellular S. Typhimurium are recognized by autophagy under in vitro infection conditions. Immunofluorescence studies revealed that autophagy recognizes the population of S.Typhimurium within damaged SCVs early after infection. The consequences of autophagic recognition of S. Typhimurium are still being elucidated, though a restrictive effect on intracellular bacterial replication has been demonstrated. Results of our in vitro infection studies are consistent with autophagy playing a role in cellular defense against S. Typhimurium that become exposed to the cytosol.  相似文献   

16.
Autophagy is a cellular process leading to the degradation of cytoplasmic components such as organelles and intracellular pathogens. It has been shown that HIV-1 relies on several components of the autophagy pathway for its replication, but the virus also blocks late steps of autophagy to prevent its degradation. We generated stable knockdown T cell lines for 12 autophagy factors and analyzed the impact on HIV-1 replication. RNAi-mediated knockdown of 5 autophagy factors resulted in inhibition of HIV-1 replication. Autophagy analysis confirmed a specific defect in the autophagy pathway for 4 of these 5 factors. We also scored the impact on cell viability, but no gross effects were observed. Upon simultaneous knockdown of 2 autophagy factors (Atg16 and Atg5), an additive inhibitory effect was scored on HIV-1 replication. Stable knockdown of several autophagy factors inhibit HIV-1 replication without any apparent cytotoxicity. We therefore propose that targeting of the autophagy pathway can be a novel therapeutic approach against HIV-1.  相似文献   

17.
L Gong  RJ Devenish  M Prescott 《IUBMB life》2012,64(9):740-747
The macrophage is a key component of host defense mechanisms against pathogens. In addition to the phagocytosis of bacteria and secretion of proinflammatory mediators by macrophages, autophagy, a process involved in turnover of cellular material, is a recently identified component of the immune response to bacterial infection. Despite the bactericidal effect of autophagy, some species of intracellular bacteria are able to survive by using one or more strategies to avoid host autophagic attack. Here, we review the latest findings on the interactions between bacteria and autophagy in macrophages. ? 2012 IUBMB Life, 64(9): 740-747, 2012.  相似文献   

18.
Macroautophagy/autophagy is a conserved catabolic process through which cellular excessive or dysfunctional proteins and organelles are transported to the lysosome for terminal degradation and recycling. Over the past few years increasing evidence has suggested that autophagy is not only a simple metabolite recycling mechanism, but also plays a critical role in the removal of intracellular pathogens such as bacteria and viruses. When autophagy engulfs intracellular pathogens, the pathway is called ‘xenophagy’ because it leads to the elimination of foreign microbes. Recent studies support the idea that xenophagy can be modulated by bacterial infection. Meanwhile, convincing evidence indicates that xenophagy may be involved in malignant transformation and cancer therapy. Xenophagy can suppress tumorigenesis, particularly during the early stages of tumor initiation. However, in established tumors, xenophagy may also function as a prosurvival pathway in response to microenvironment stresses including bacterial infection. Therefore, bacterial infection-related xenophagy may have an effect on tumor initiation and cancer treatment. However, the role and machinery of bacterial infection-related xenophagy in cancer remain elusive. Here we will discuss recent developments in our understanding of xenophagic mechanisms targeting bacteria, and how they contribute to tumor initiation and anticancer therapy. A better understanding of the role of xenophagy in bacterial infection and cancer will hopefully provide insight into the design of novel and effective therapies for cancer prevention and treatment.  相似文献   

19.
Autophagy is a homeostatic process that enables eukaryotic cells to deliver cytoplasmic constituents for lysosomal degradation, to recycle nutrients and to survive during starvation. In addition to these primordial functions, autophagy has emerged as a key mechanism in orchestrating innate and adaptive immune responses to intracellular pathogens. Autophagy restricts viral infections as well as replication of intracellular bacteria and parasites and delivers pathogenic determinants for TLR stimulation and for MHC class II presentation to the adaptive immune system. Apart from its role in defense against pathogens, autophagy-mediated presentation of self-antigens in the steady state could have a crucial role in the induction and maintenance of CD4(+) T-cell tolerance. This review describes the mechanisms by which the immune system utilizes autophagic degradation of cytoplasmic material to regulate adaptive immune responses.  相似文献   

20.
The host cell recognition and removal of invading pathogens are crucial for the control of microbial infections. However, several microorganisms have developed mechanisms that allow them to survive and replicate intracellularly. Autophagy is an ubiquitous physiological pathway in eukaryotic cells, which maintains the cellular homeostasis and acts as a cell quality control mechanism to eliminate aged organelles and unnecessary structures. In addition, autophagy has an important role as a housekeeper since cells that have to get rid of invading pathogens use this pathway to assist this eradication. In this review we will summarize some strategies employed by bacterial pathogens to modulate autophagy to their own benefit and, on the other hand, the role of autophagy as a protective process of the host cell. In addition, we will discuss here recent studies that show the association of LC3 to a pathogen-containing compartment without a classical autophagic sequestering process (i.e. formation of a double membrane structure).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号