首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of foreign enzymes in yeast is a traditional genetic engineering approach; however, useful secretory enzymes are not produced in every case. The hyperthermostable α-amylase encoded by the AmyL gene of Bacillus licheniformis was expressed in Saccharomyces cerevisiae; however, it was only weakly produced and was degraded by the proteasome. To determine the cause of low α-amylase production, AmyL was expressed in a panel of yeast mutants harboring knockouts in non-essential genes. Elevated AmyL production was observed in 44 mutants. The knockout genes were classified into six functional categories. Remarkably, all non-essential genes required for N-linked oligosaccharide synthesis and a gene encoding an oligosaccharyl transferase subunit were identified. Immunoblotting demonstrated that differently underglycosylated forms of AmyL were secreted from oligosaccharide synthesis-deficient mutants, while a fully glycosylated form was produced by wild-type yeast, suggesting that N-linked glycosylation of AmyL inhibited its secretion in yeast. Mutational analysis of six potential N-glycosylation sites in AmyL revealed that the N33Q and N309Q mutations remarkably affected AmyL production. To achieve higher AmyL production in yeast, all six N-glycosylation sites of AmyL were mutated. In wild-type yeast, production of the resulting non-glycosylated form of AmyL was threefold higher than that of the glycosylated form.  相似文献   

2.
We have isolated and characterized a new yeast mutation in the glucosylation steps of lipid-linked oligosaccharide biosynthesis, alg8-1. Cells carrying the alg8-1 mutation accumulate Glc1Man9GlcNAc2-lipid both in vivo and in vitro. We present evidence showing that the alg8-1 mutation blocks addition of the second alpha 1,3-linked glucose. alg8-1 cells transfer Glc1Man9GlcNAc2 to protein instead of the wild type oligosaccharide, Glc3Man9GlcNAc2. Pulse-chase studies indicate that the Glc1Man9GlcNAc2 transferred is processed more slowly than the wild type oligosaccharide. The yeast mutation gls1-1 lacks glucosidase I activity (Esmon, B., Esmon, P.C., and Schekman, R. (1984) J. Biol. Chem. 259, 10322-10327), the enzyme responsible for removing the alpha 1,2-linked glucose residues from protein-linked oligosaccharides. We demonstrate that gls1-1 cells contain glucosidase II activity (which removes alpha 1,3-linked glucose residues) and have constructed the alg8-1 gls1-1 haploid double mutant. The Glc1Man9GlcNAc2 oligosaccharide was trimmed normally in these cells, demonstrating that the alg8-1 oligosaccharide contained an alpha 1,3-linked glucose residue. A novel Glc2 compound was probably produced by the action of the biosynthetic enzyme that normally adds the alpha 1,2-linked glucose to lipid-linked Glc2Man9GlcNAc2. This enzyme may be able to slowly add alpha 1,2-linked glucose residue to protein-bound Glc1Man9GlcNAc2. The relevance of these findings to similar observations in other systems where glucose residues are added to asparagine-linked oligosaccharides and the possible significance of the reduced rate of oligosaccharide trimming in the alg mutants are discussed.  相似文献   

3.
The dolichol-linked oligosaccharide donor (Glc(3)Man(9)GlcNAc(2)-PP-Dol) for N-linked glycosylation of proteins is assembled in a series of reactions that initiate on the cytoplasmic face of the rough endoplasmic reticulum and terminate within the lumen. The biochemical analysis of the oligosaccharyltransferase and the glycosyltransferases that mediate assembly of dolichol-linked oligosaccharides (OS-PP-Dol) has been hindered by the lack of structurally homogeneous substrate preparations. We have developed an improved method for the preparative-scale isolation of dolichol-linked oligosaccharides from vertebrate tissues and yeast cells. Preparations that were highly enriched in either Glc(3)Man(9)GlcNAc(2)-PP-Dol or Man(9)GlcNAc(2)-PP-Dol were obtained from porcine pancreas and a Man(5)GlcNAc(2)-PP-Dol preparation was obtained from an alg3 yeast culture. Chromatography of the OS-PP-Dol preparations on an aminopropyl silica column was used to obtain dolichol-linked oligosaccharides with defined structures. A single chromatography step could achieve near-baseline resolution of dolichol-linked oligosaccharides that differed by one sugar residue. A sensitive oligosaccharyltransferase endpoint assay was used to determine the concentration and composition of the OS-PP-Dol preparations. Typical yields of Glc(3)Man(9)GlcNAc(2)-PP-Dol, Man(9)GlcNAc(2)-PP-Dol, and Man(5)GlcNAc(2)-PP-Dol ranged between 5 and 15 nmol per chromatographic run. The homogeneity of these preparations ranged between 85 and 98% with respect to oligosaccharide composition. Purification of dolichol-linked oligosaccharides from cultures of alg mutant yeast strains provides a general method to obtain authentic OS-PP-Dol assembly intermediates of high purity. The analytical methods described here can be used to accurately evaluate the steady-state dolichol-linked oligosaccharide compositions of wild-type and mutant cell lines.  相似文献   

4.
Neurofibromatosis type 2 (NF2), a syndrome associated with multiple tumors of the nervous system, mostly schwannomas, is caused by mutations in the NF2 tumor suppressor gene that encodes schwannomin (Sch). Here we examined NF2 pathogenetic mutations that result in misfolding of the FERM domain. We found that these mutant forms of Sch were efficiently degraded by the ubiquitin-proteasome pathway. In transfected cells, Sch Delta F118 was 3-fold more efficiently degraded than the related molecule ezrin bearing the equivalent mutation. In heterozygous Nf2 knock-out mouse fibroblasts, endogenous mutant Sch Delta 81-121, but not wild type Sch, was also degraded by proteasomes. We further show that this degradation pathway is functional in primary Schwann cells. We analyzed Sch Delta 39-121 expressed in a transgenic mouse model of NF2 and found that Sch Delta 39-121, but not the endogenous wild type Sch, was unstable due to proteasome-mediated degradation. Altogether these results suggest that degradation of mutant Sch mediated by the ubiquitin-proteasome pathway is a physiopathological pathway contributing to the loss of Sch function in NF2 patients.  相似文献   

5.
Wild type, partially and fully-deglycosylated human sex steroid-binding protein (SBP or SHBG) cDNAs lacking the native cucaryotic signal sequence were cloned into a yeast expression vector containing the Saccharomyces cerevisiae alpha-factor for extracellular secretion. Following transformation into Pichia pastoris, the wild type and all constructed mutants were successfully expressed. The levels were lower for the deglycosylated mutants indicating that oligosaccharide side chains may play a role in SBP secretion. Under fermentation conditions, the wild type protein was expressed at a level of 4 mg/l while the fully-deglycosylated mutant T7A/N351Q/N367Q was expressed at about 1.5 mg/l. The latter was purified from several fermentation runs and was found to be completely deglycosylated, electrophoretically homogeneous and fully active. The aminoterminus was found to have the sequence NH2QSAHDPPAV- indicating that cleavage of the alpha-factor occurred at the A(+7)-Q(+8) peptide bond. The molecular mass of the subunit was determined to be 39,717.8 Da, which is in complete agreement with the amino acid sequence of the T7A/N351Q/N367/Q mutant. The equilibrium constants for the dissociation of 5alpha-dihydrotestosterone and steroid binding specificity were found to be identical to that of the human plasma protein indicating that the missing N-terminal segment NH2-LRPVLPT and the removal of oligosaccharide side chains do not affect the stability and active conformation of the protein. In conclusion, the data presented reveal that the SBP mutant T7A/N351Q/N367/Q is the protein of choice for solving the three-dimensional structure.  相似文献   

6.
In this report we present an initial determination of the biochemical defect present in a Chinese hamster ovary cell line selected for resistance to concanavalin A. Membranes of this mutant, B211, incorporated at least 10-fold less mannose from GDP-[14C]mannose into oligosaccharide-lipid than membranes of the wild type. In the presence of dolichol phosphate, membranes of the mutant and wild type exhibited similar rates of synthesis of number of early intermediates, namely, mannosylphosphoryldolichol, N-acetylglucosaminyl- and N,N'-diacetylchitobiosylpyrophosphoryldolichol, glucosylphosphoryldolichol, and mannosyloligosaccharide-lipid. The membranes of B211 did not incorporate glucose from UDP-[3H]glucose into oligosaccharide-lipid or protein. Comparison by gel filtration chromatography of oligosaccharides derived from the oligosaccharide-lipids of B211 and wild type cells labeled with [2-3H]mannose revealed that B211 cells incorporated little if any label into an oligosaccharide corresponding to the most excluded oligosaccharide labeled by wild type cells. This concanavalin A-resistant cell line appears to lack the ability to glucosylate oligosaccharide-lipid.  相似文献   

7.
Chinese hamster ovary cells express a wide variety of glycoproteins with Mr ranging from 15,000 to 200,000 dalton and higher. Glycosylation of these proteins was much less in cAMP-dependent protein kinase (PKA)-deficient mutants which expressed either (i) a defective C-subunit with altered substrate specificity and having no detectable type II kinase (mutant 10215); or (ii) an altered RI subunit and having no detectable type II kinase (mutant 10248); or (iii) exhibited the lowest level of total kinase with no detectable type I kinase but having a small amount of type II kinase (mutant 10260). Addition of 8Br-cAMP enhanced protein glycosylation index in wild type cells 10001 by 120% but only 7 to 23% in the mutant cells. The rate of lipid-linked oligosaccharide (LLO) biosynthesis was linear for 1 h in all cell types, but the total amount of LLO expressed was much less in PKA-deficient mutants. Pulse-chase experiments indicated that the t1/2 for LLO turnover was also twice as high in PKA-deficient cells as in the wild type. Size exclusion chromatography of the mild-acid released oligosaccharide confirmed that both wild type and the mutant cells synthesized Glc3Man9GlcNAc2-PP-Dol as the most predominating species with no accumulation of Man5GlcNAc2-PP-Dol in the mutants. Kinetic studies exhibited a reduced mannosylphosphodolichol synthase (DPMS) activity in mutant cells with a Km for GDP-mannose 160 to 400% higher than that of the wild type. In addition, the kcat for DPMS was also reduced 2 to 4-fold in these mutant cells. Exogenously added Dol-P failed to rescue the kcat for DPMS in CHO cell mutants; however, in vitro protein phosphorylation with a cAMP-dependent protein kinase restored their kinetic activity to the level of the wild type. Published in 2004.  相似文献   

8.
Transmission of simian immunodeficiency virus SIVmac239Delta(nef) (Delta(nef)) to macaques results in attenuated replication of the virus in most animals and ultimately induces protection against challenge with some pathogenic, wild-type SIV strains. It has been difficult, however, to identify a culture system in which the replication of Delta(nef) is severely reduced relative to that of the wild type. We have utilized a primary culture system consisting of blood-derived dendritic cells (DCs) and autologous T cells. When the DCs were fully differentiated or mature, the DC-CD4(+) T-cell mixtures supported replication of both the parental SIV strain, 239 (the wild type), and its mutant with nef deleted (Delta(nef)), irrespective of virus dose and the cell type introducing the virus to the coculture. In contrast, when immature DCs were exposed to Delta(nef) and cocultured with T cells, virus replication was significantly lower than that of the wild type. Activation of the cultures with a superantigen allowed both Delta(nef) and the wild type to replicate comparably in immature DC-T-cell cultures. Immature DCs, which, it has been hypothesized, capture and transmit SIV in vivo, are deficient in supporting replication of Delta(nef) in vitro and may contribute to the reduced pathogenicity of Delta(nef) in vivo.  相似文献   

9.
10.
The ZRC1 gene encodes a multicopy suppressor of zinc toxicity in Saccharomyces cerevisiae; however, previously we found that the expression of ZRC1 was induced when the intracellular zinc level was decreased. Zrc1 has six putative transmembrane domains and we determined that a Zrc1-GFP fusion protein was localized to the vacuolar membrane. The steady state level of intracellular zinc in a zrc1Delta mutant cultured in the zinc-abundant medium was lower than that in wild type. No distinct difference was observed in the basal activity of glyoxalase I, which is a cytosolic enzyme requiring zinc for catalytic function and is used here as a marker for cytosolic zinc-availability, between wild type and zrc1Delta mutant, although the activity was decreased much greater extent in the zrc1Delta mutant if the cells were exposed to the metal-limited medium. Similarly, the basal expression level of ZRC1-lacZ reporter gene in zrc1Delta mutant was the same as that in wild type; however, the fold of induction of ZRC1-lacZ expression in zrc1Delta mutant under the zinc-limited conditions was higher than that in the wild type. Based on these results, we present a tentative model for the function of Zrc1 as a mechanism to maintain the zinc homeostasis in yeast.  相似文献   

11.
Assembly of the dolichol-linked oligosaccharide precursor (Glc(3) Man(9) GlcNAc(2) ) is highly conserved among eukaryotes. In contrast to yeast and mammals, little is known about the biosynthesis of dolichol-linked oligosaccharides and the transfer to asparagine residues of nascent polypeptides in plants. To understand the biological function of these processes in plants we characterized the Arabidopsis thaliana homolog of yeast ALG10, the α1,2-glucosyltransferase that transfers the terminal glucose residue to the lipid-linked precursor. Expression of an Arabidopsis ALG10-GFP fusion protein in Nicotiana benthamiana leaf epidermal cells revealed a reticular distribution pattern resembling endoplasmic reticulum (ER) localization. Analysis of lipid-linked oligosaccharides showed that Arabidopsis ALG10 can complement the yeast Δalg10 mutant strain. A homozygous Arabidopsis T-DNA insertion mutant (alg10-1) accumulated mainly lipid-linked Glc(2) Man(9) GlcNAc(2) and displayed a severe protein underglycosylation defect. Phenotypic analysis of alg10-1 showed that mutant plants have altered leaf size when grown in soil. Moreover, the inactivation of ALG10 in Arabidopsis resulted in the activation of the unfolded protein response, increased salt sensitivity and suppression of the phenotype of α-glucosidase I-deficient plants. In summary, these data show that Arabidopsis ALG10 is an ER-resident α1,2-glucosyltransferase that is required for lipid-linked oligosaccharide biosynthesis and subsequently for normal leaf development and abiotic stress response.  相似文献   

12.
The yeast cwh36Delta mutant was identified in a screen for yeast mutants exhibiting a Vma(-) phenotype suggestive of loss of vacuolar proton-translocating ATPase (V-ATPase) activity. The mutation disrupts two genes, CWH36 and a recently identified open reading frame on the opposite strand, YCL005W-A. We demonstrate that disruption of YCL005W-A is entirely responsible for the Vma(-) growth phenotype of the cwh36Delta mutant. YCL005W-A encodes a homolog of proteins associated with the Manduca sexta and bovine chromaffin granule V-ATPase. The functional significance of these proteins for V-ATPase activity had not been tested, but we show that the protein encoded by YCL005W-A, which we call Vma9p, is essential for V-ATPase activity in yeast. Vma9p is localized to the vacuole but fails to reach the vacuole in a mutant lacking one of the integral membrane subunits of the V-ATPase. Vma9p is associated with the yeast V-ATPase complex in vacuolar membranes, as demonstrated by co-immunoprecipitation with known V-ATPase subunits and glycerol gradient fractionation of solubilized vacuolar membranes. Based on this evidence, we propose that Vma9p is a genuine subunit of the yeast V-ATPase and that e subunits may be a functionally essential part of all eukaryotic V-ATPases.  相似文献   

13.
The expression of the maltose regulon in Escherichia coli is induced when maltose or maltodextrins are present in the growth medium. Mutations in malK, which codes for a component of the transport system, result in the elevated expression of the remaining mal genes. Uninduced expression in the wild type, as well as elevated expression in malK mutants, is strongly repressed at high osmolarity. In the absence of malQ-encoded amylomaltase, expression remains high at high osmolarity. We found that uninduced expression in the wild type and elevated expression in malK mutants were paralleled by the appearance of two types of endogenous carbohydrates. One, produced primarily at high osmolarity, was identified as comprising maltodextrins that are derived from glycogen or glycogen-synthesizing enzymes. The other, produced primarily at low osmolarity, consisted of an oligosaccharide that was not derived from glycogen. We isolated a mutant that no longer synthesized this oligosaccharide. The gene carrying this mutation, termed malI, was mapped at min 36 on the E. coli linkage map. A Tn10 insertion in malI also resulted in the loss of constitutivity at low osmolarity and delayed the induction of the maltose regulon by exogenous inducers.  相似文献   

14.
Insulin receptor (IR) is a glycoprotein possessing N-linked oligosaccharide side chains on both alpha and beta subunits. The present study focuses for the first time on the potential contribution of N-linked oligosaccharides of the beta subunit in the processing, structure, and function of the insulin receptor. To investigate this point, a receptor mutant (IR beta N1234) was obtained by stable transfection into Chinese hamster ovary cells of an IR cDNA modified by site-directed mutagenesis on the four potential N-glycosylation sites (Asn-X-Ser/Thr) of the beta subunit. The mutated receptor presents an alpha subunit of 135 kDa, indistinguishable from the wild type alpha subunit, but the beta subunit has a reduced molecular mass (80 kDa instead of 95 kDa) most likely due to the absence of N-glycosylation. Metabolic labeling experiments indicate a normal processing and maturation of this mutated receptor which is normally expressed at the surface of the cells as demonstrated by indirect immunofluorescence. The affinity of the mutant for insulin (Kd = 0.12 nM) is similar to that of the wild type receptor (Kd = 0.12 nM). However, a major defect of the mutated IR tyrosine kinase was assessed both in vitro and in vivo by (i) the absence of insulin-stimulated phosphorylation of the poly(Glu-Tyr) substrate in vitro; (ii) the reduction of the insulin maximal stimulation of the mutated IR autophosphorylation in vitro (2-fold stimulation for the mutant receptor as compared to a 7-fold stimulation for the wild type); and (iii) a more complex alteration of the mutated receptor tyrosine autophosphorylation in vivo (3-fold increase of the basal phosphorylation and a 4-fold simulation of this phosphorylation as compared to the wild type receptor, the phosphorylation of which is stimulated 14-fold by insulin). The physiological consequences of this defect were tested on three classical insulin cellular actions; in Chinese hamster ovary IR beta N1234, glucose transport, glycogen synthesis, and DNA synthesis were all unable to be stimulated by insulin indicating the absence of insulin transduction through this mutated receptor. These data provide the first direct evidence for a critical role of oligosaccharide side chains of the beta subunit in the molecular events responsible for the IR enzymatic activation and signal transduction.  相似文献   

15.
N-glycosylation was measured in wild-type cell lysates of Dictyostelium discoideum and in two mutant strains that synthesize a truncated lipid-linked oligosaccharide, Man6GlcNAc2 lacking terminal mannose and glucose residues. Endogenous lipid-linked oligosaccharide (LLO) was transferred to octanoyl-Asn-[125I]Tyr-ThrNH2 by membrane fractions. About 50% of the glycopeptide product remained associated with membranes. Taurocholate and saponin promoted and preserved glycosylation, but NP-40 and Triton X-100 did not. Using this artificial assay, the rate and extent of transfer of the truncated lipid-linked oligosaccharide in extracts of the two mutant strains, HL241 and HL243, was reduced 5-10-fold relative to that of wild-type. The low activity found in the mutant strains appears to result from either reduced affinity of the truncated LLO for the transferase or from its improper topological localization in the membrane. When protein N-glycosylation is measured in living cells it is nearly normal in HL241, but it is 3-4-fold decreased in HL243. Although the results of the in vitro and in vivo assays differ, they are not in conflict. Rather, they suggest that the static in vitro assay may be capable of revealing subtleties in the productive positioning of LLO and the oligosaccharyl transferase. The decrease in glycosylation seen in intact HL243 cells may be a consequence of the pleiotropic effects of the primary mutation rather than a direct result of the altered LLO structure. Genetic analysis showed that the mutation in HL241 is recessive, while the mutation in HL243 is dominant and prevents normal development. Thus, the two mutants share a lesion in lipid-linked oligosaccharide biosynthesis and in cell-free glycosylation, but differ in their in vivo glycosylation. Their primary defects are probably different.  相似文献   

16.
We have previously shown that an N-glycosylation site of N306 of HIV-1 gp120 is not necessary for the HIV-1 infectivity but protects HIV-1 from neutralising antibodies. In contrast Nakayama et al. [FEBS Lett. (1998) 426, 367-372], using a virus with an identical V3 region, suggested that elimination of this particular glycan reduced the ability of T-tropic HIV to bind to CXCR4 and hence its ability to infect T cell lines. We therefore re-examined the ability of a mutant virus, lacking the N306 glycan, to replicate in various types of cells and found no change in co-receptor usage for mutant virus. The ability of mutant virus to replicate or to induce syncytia in infected cells was similar to that of wild type virus. These results corroborate our original observation, confirming that the induced mutation in the N306 glycosylation site neither impairs nor improves the ability of mutant virus to replicate in permissive cells.  相似文献   

17.
Karaoglu D  Kelleher DJ  Gilmore R 《Biochemistry》2001,40(40):12193-12206
The oligosaccharyltransferase (OST) preferentially utilizes the fully assembled dolichol-linked oligosaccharide Glc(3)Man(9)GlcNAc(2)-PP-Dol as the donor for N-linked glycosylation of asparagine residues in N-X-T/S consensus sites in newly synthesized proteins. A wide variety of assembly intermediates (Glc(0-2)Man(0-9)GlcNAc(2)-PP-Dol) can serve as the donor substrate for N-linked glycosylation of peptide acceptor substrates in vitro or of nascent glycoproteins in mutant cells that are defective in donor substrate assembly. A kinetic mechanism that can account for the selection of the fully assembled donor substrate from a complex mixture of dolichol-linked oligosaccharides (OS-PP-Dol) has not been elucidated. Here, the steady-state kinetic properties of the OST were reinvestigated using a proteoliposome assay system consisting of the purified yeast enzyme, near-homogeneous preparations of a dolichol-linked oligosaccharide (Glc(3)Man(9)GlcNAc(2)-PP-Dol or Man(9)GlcNAc(2)-PP-Dol) and an (125)I-labeled tripeptide as the acceptor substrate. The K(m) of the OST for the acceptor tripeptide was only slightly enhanced when Glc(3)Man(9)GlcNAc(2)-PP-Dol was the donor substrate relative to when Man(9)GlcNAc(2)-PP-Dol was the donor substrate. Evaluation of the kinetic data for both donor substrates showed deviations from typical Michaelis-Menten kinetics. Sigmoidal saturation curves, Lineweaver-Burk plots with upward curvature, and apparent Hill coefficients of about 1.4 suggested a substrate activation mechanism involving distinct regulatory (activator) and catalytic binding sites for OS-PP-Dol. Results of competition experiments using either oligosaccharide donor as an alternative substrate were also consistent with this hypothesis. We propose that binding of either donor substrate to the activator site substantially enhances Glc(3)Man(9)GlcNAc(2)-PP-Dol occupancy of the enzyme catalytic site via allosteric activation.  相似文献   

18.
We examined the oligosaccharide binding to Streptomyces sp. N174 chitosanase by fluorescence spectroscopy. By means of the tryptophan fluorescence quenching, the oligosaccharide binding abilities were evaluated using the three mutant enzymes (D57A, E197A, and D201A). The enzymatic activities of the mutant enzymes were 0.5%, 20.0%, and 38.5% of that of the wild type, respectively. Scatchard plot obtained for the wild type enzyme showed a biphasic profile, suggesting that the oligosaccharide binds to the chitosanase with two different binding sites (the high affinity site and the low affinity site). In contrast, Scatchard plot for E197A exhibited a monophasic profile, in which the slope of the line corresponds to that for the low affinity binding of the wild type enzyme. A monophasic profile was also obtained for D201A, but the slope of the line was similar to that of the high affinity binding. Thus, we conclude that Glu197 and Asp201 are responsible for oligosaccharide binding at the high affinity site and the low affinity site, respectively, which correspond to the (-n) subsites and the (+n) subsites (n=1, 2, and 3). The fluorescence quenching was very weak in D57A, suggesting a strong contribution of this residue to the oligosaccharide binding.  相似文献   

19.
20.
A "quality control" system associated with the endoplasmic reticulum (ER) that discriminates between misfolded proteins and correctly folded proteins is present in a variety of eukaryotic cells, including yeast. Recently, it has been shown that misfolded proteins that are N -glycosylated in the lumen of the ER are transported out of the ER, de-N-glycosylated by a soluble peptide: N -glycanase (PNGase) and degraded by action of the proteasome. It also has been shown that small N -glycosylatable peptides follow a fate similar to that of misfolded proteins, i.e., glycosylation in the lumen of the ER, transport out of the ER, and de- N -glycosylation in the cytosol. These processes of retrograde glycopeptide transport and de- N -glycosylation have been observed in mammalian cells, as well as in yeast cells. However, little is known about the mechanism involved in the movement of glycopeptides from the ER to the cytosol. Here we report a simple method for assaying N -glycosylation/de- N -glycosylation by simple paper chromatographic and electrophoretic techniques using an N -glycosylatable(3)H-labeled tripeptide as a substrate. With this method, we confirmed the cytosolic localization of the de- N -glycosylated peptide, which supports the idea that de- N -glycosylation occurs after the export of the glycopeptide from the lumen of the ER to the cytosol. Further, we found that the variations in the structure of the oligosaccharide chain on the glycopeptide did not cause differences in the export of the glycopeptide. This finding suggests that the mechanism for the export of small glycopeptides may differ from that of misfolded (glyco)proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号