首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dithiol-reactive reagent phenylarsine oxide causes a pH-dependent stimulation of unidirectional K+ flux into respiring rat liver mitochondria. This stimulation is diminished by subsequent addition of either the dithiol 2,3-dimercaptopropanol or the monothiol 2-mercaptoethanol. In contrast, uncoupling by phenylarsine oxide is reversed by 2,3-dimercaptopropanol but not by 2-mercaptoethanol. The data suggest separate sites of interaction of phenylarsine oxide with mechanisms of K+ entry and ATP synthesis. Stimulatory effects of mersalyl and phenylarsine oxide on K+ influx are not additive. Thus PheASO and mersalyl may affect K+ influx at a common site. Pretreatment of the mitochondria with DCCD, which inhibits K+ influx, fails to alter sensitivity to PheAsO or mersalyl. Thus the DCCD binding site associated with the K+ influx mechanism appears to be separate from and independent of the sulfhydryl group(s) which mediate stimulation of K+ influx by PheAsO and mersalyl.PheAsO, like mersalyl, also increases the rate of unidirectional K+ efflux from respiring mitochondria. The combined presence of PheAsO plus mersalyl causes a greater stimulation of K+ efflux than is observed with either reagent alone.Abbreviations used: BAL, British AntilLewisite or 2,3-dimercaptopropanol; DCCD, dicyclohexylcarbodiimide; DBCT, dibutylchloromethyltin chloride; 2-ME, 2-mercaptoethanol; PheAsO, phenylarsine oxide.  相似文献   

2.
Respiration-dependent K+ fluxes across the limiting membranes of isolated rat liver mitochondria, measured by means of42K, are stimulated by the oxidative phosphorylation inhibitor dibutylchloromethyltin chloride (DBCT). A lack of effect of Cl concentration indicates that the stimulation of K+ flux by DBCT is not attributable to Cl/OH exchange activity. The mercurial mersalyl was previously shown to stimulate respiration-dependent K+ influx. The combined presence of mersalyl plus DBCT results in a greater stimulation of K+ influx than is caused by either DBCT or mersalyl alone. The oxidative phosphorylation inhibitor oligomycin, which alone has no effect on respiration-dependent K+ influx, enhances the stimulatory effect of mersalyl on K+ influx. The data are consistent with, although not proof of, a direct interaction of the K+ transport mechanism with the mitochondrial energy transduction apparatus.Abbreviations used: DCCD,N,N-dicyclohexylcarbodiimide; DBCT, dibutylchloromethyltin chloride.  相似文献   

3.
Coupling factor B activity was measured by the stimulation of the ATP-driven NAD+ reduction by succinate or the 32Pi-ATP exchange activity of Factor B-depleted submitochondrial particles. Half-maximal coupling activity was inhibited by 30 microM cadmium, 5 microM phenylarsine oxide, or 0.3 mM arsenite-2,3-dimercaptopropanol. The inhibition was relieved by slight excess of dithiol but not by a 10-fold molar excess of 2-mercaptoethanol. Inhibition of coupling activity by phenylarsine oxide or cadmium was not due to interference in binding of Factor B to depleted particles. Isolated Factor B binds phenylarsine oxide resulting in loss of ability to stimulate depleted submitochondrial particles. The inhibition was largely overcome by dithiol but not by monothiols. The residual coupling activity of depleted submitochondrial particles was highly resistant to cadmium or arsenical. Moreover, binding of arsenical to the depleted particles per se, did not result in inhibition of Factor B-stimulated activity. Furthermore, the addition of phenylarsine oxide to H+-ATPase resulted in loss of Pi-ATP exchange and stimulation of oligomycin-sensitive ATPase activities. Both effects were further potentiated by 2-mercaptoethanol and reversed by dithiols. These effects parallel uncoupling of oxidative phosphorylation in mitochondria by these inhibitors and point to Factor B as the probable component sensitive to these inhibitors.  相似文献   

4.
In the presence of 100 mM glucose antimycin A inhibits the respiration of the yeast S. carlsbergensis by 94%, but does not affect the K+ efflux, Mn2+ influx or the synthesis of high molecular weight polyphosphate (HPP). Therefore phosphorylation at the respiratory chain level is not involved in HPP synthesis or Mn2+ accumulation. Zn2+ similar to Mn2+ induces K+ efflux and HPP synthesis, while Co2+ and Ni2+ fail to produce these effects. The extracellular K+ (1-5 mM KCl) completely inhibits the HPP synthesis and reduces Mn2+ uptake by 40%. NaCl (60 mM) inhibits the HPP synthesis by 28%. Nigericin, candicidin and FCCP plus valinomycin completely prevent the HPP synthesis. The prolonged accumulation of Zn2+ and Mn2+ is accompanied by HPP conversion into low molecular weight polyphosphate (LPP). The HPP synthesis in response to the K+ efflux may be regarded as a specific regulatory mechanism, which increases the energy efficiency of yeast metabolism.  相似文献   

5.
Summary Rapid uptake of Ba2+ by respiring rat liver mitochondria is accompanied by a transient stimulation of respiration. Following accumulation of Ba2+, e.g. at a concentration of 120 nmol per mg protein, the mitochondria exhibit reduced rates of state 3 and uncoupler-stimulated respiration. ADP-stimulated respiration is inhibited at a lower concentration of Ba2+ than is required to affect uncoupler-stimulated respiration, suggesting a distinct effect of Ba2+ on mechanisms involved in synthesis of ATP. Ba2+, which has an ionic radius similar to that of K+, inhibits unidirectional K+ flux into respiring rat liver mitochondria. This effect on K+ influx is observable at concentrations of Ba2+, e.g. 23 to 37 nmol per mg protein, which cause no significant change in state 4 or uncoupler-stimulated respiration. The accumulated Ba2+ decreases the measuredV max of K+ influx, while having little effect on the apparentK m for K+. The inhibition of K+ influx by Ba2+ is seen in the presence and absence of mersalyl, an activator of K+ influx. In contrast, under the conditions studied, Ba2+ has no apparent effet on the rate of unidirectional K+ efflux. These data are consistent with the idea that K+ may enter and leave mitochondria via spearate mechanisms.  相似文献   

6.
Unidirectional fluxes of Mg2+ across the limiting membranes of rat liver mitochondria have been measured in the presence of the respiratory substrate succinate by means of the radioisotope 28Mg. Rates of both influx and efflux of Mg2+ are decreased when respiration is inhibited. A linear dependence of the reciprocal of the Mg2+ influx rate on the reciprocal of the Mg2+ concentration is observed. The apparent Km for Mg2+ averages about 0.7 mM. N-Ethyl-maleimide, an inhibitor of transmembrane phosphate-hydroxyl exchanges, enhances the observed pH dependence of Mg2+, influx. In the presence of MalNEt, the apparent Vmax of Mg2+ influx is greater at pH 8 than at pH 7, and there is a linear dependence of the Mg2+ influx rate on the external OH- concentration. The K+ analogue Tl+ inhibits Mg2+ influx, while La3+, an inhibitor of mitochondrial Ca2+ transport, has no effect on Mg2+ influx. Mg2+ competitively inhibits the flux of K+ into rat liver mitochondria. The mechanism(s) mediating mitochondrial Mg2+ and K+ fluxes appear to be similar in their energy dependence, pH dependence, sensitivity to Tl+, and insensitivity to La3+.  相似文献   

7.
Activation of potassium ion transport in mitochondria by cadmium ion   总被引:2,自引:0,他引:2  
Low levels of Cd2+ (1-5 microM) produce rapid swelling of mitochondria, which is respiration-dependent and uncoupler-sensitive. No cation requirement is apparent, since the swelling occurs in a medium containing only sucrose and the respiratory substrate. The swelling is inhibited by ruthenium red, suggesting that this effect of Cd2+ requires its entry into mitochondria. In medium containing 9 mM K+, addition of Cd2+ along with ruthenium red increases the rate of K+ influx threefold. In the presence of K+, Rb+ or Li+, but not of Na+, addition of Cd2+ produces first efflux of H+ into the medium followed by discharge of the pH gradient or uncoupling. Only the latter effect is inhibited by ruthenium red, showing that the efflux and influx of H+ are independent reactions. The H+ efflux appears to be an antiport response to the induced K+ entry. Its activation by Cd2+ is similar to the known effect of p-chloromercuriphenyl sulfonate. The H+ influx or uncoupling appears to result from binding of Cd2+ to some matrix-facing membrane site, perhaps the dithiol group on coupling factor B, and may relate to apparent permeability changes associated Cd2+-induced swelling.  相似文献   

8.
Dibutylchloromethyl tin chloride (DBCT) inhibits coupled and uncoupled respiration of mitochondria from potato tubers, cauliflower florets and etiolated mung bean hypocotyls with succinate andl-malate but not with external NADH or TMPD/ascorbate as substrates. Using potato and cauliflower mitochondria, DBCT at 200 pmole/mg of protein gives complete inhibition only in KCl-based media and at pH 6.8. DBCT has no effect on the internal pH of mung bean mitochondria, but does cause a decrease in the membrane potential. Electron transport through the alternative oxidase is not inhibited, neither is the ATP-synthase system. DBCT appears to interact with the functionally-distinct pool of ubiquinone associated with the oxidation of succinate andl-malate.  相似文献   

9.
Addition of Cd2+ or phenylarsine oxide (PhAsO) to respiring rat liver mitochondria results first in acidification of the medium (H+ efflux) followed by disappearance of H+ (discharge of the pH gradient or uncoupling). The first phase of H+ efflux is dependent upon the presence of K+ in the medium, and is not seen in the presence of valinomycin, which is consistent with the conclusion that H+ efflux is linked to membrane potential-dependent uptake of K+. These effects are abolished by low levels of 2,3-dimercaptopropanol but potentiated by excess of 2-mercaptoethanol, showing involvement of a dithiol type of group in the response. Mersalyl produces only the H+ efflux, and subsequent addition of Cd2+ or PhAsO produces collapse of the pH.Abbreviations BAL British Anti-Lewisite or 2,3-dimercaptopropanol - 2-ME 2-mercaptoethanol - PhAsO phenylarsine oxide - FCCP carbonylcyanide trifluoromethoxyphenylhydrazone - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid  相似文献   

10.
The characteristics of angiotensin II-, K+-, and adrenocorticotropin (ACTH)-induced calcium influx were studied in isolated adrenal glomerulosa cells. Basal calcium influx rate is 0.64 +/- 0.09 nmol/min/mg of protein. Addition of angiotensin II (1 nM) causes a rapid 230% increase in calcium influx rate. This angiotensin II-induced calcium influx is sustained and is rapidly reversed by angiotensin II antagonist, [Sar1,Ala8]angiotensin II. Addition of either K+ or ACTH (1 nM) causes a 340 or 160% increase, respectively, in the rate of calcium influx. The effect of either angiotensin II, K+, or ACTH on calcium influx is dependent on extracellular calcium. The apparent Km for calcium is 0.46, 0.35, and 0.32 mM, respectively. When the extracellular concentration of K+ is 2 mM, neither angiotensin II nor ACTH stimulates calcium influx. Conversely, when extracellular K+ is increased to 6 mM, both angiotensin II and ACTH cause a greater stimulation of calcium influx than at 4 mM K+. When extracellular K+ is increased to 10 mM, calcium influx is 360% of the basal influx seen at 4 mM K+, and neither angiotensin II nor ACTH further stimulates the influx rate. Nitrendipine (1 microM) blocks both angiotensin II- and K+-induced calcium influx completely. In contrast, 10 microM nitrendipine does not completely block ACTH-induced calcium influx. The calcium channel agonist, BAY K 8644, also stimulates calcium influx; 10 nM BAY K 8644 leads to a rate of calcium influx which is 185% of basal. This BAY K 8644-induced increase in calcium influx and that caused by either angiotensin II or ACTH are additive. In contrast, BAY K 8644 has more than an additive effect on the calcium influx when paired with 6 mM K+. These results suggest that angiotensin II, K+, and ACTH stimulate calcium influx via a common calcium channel but act by different mechanisms to alter its function.  相似文献   

11.
The aim of the present study has been to characterize the regulation by opiates of 45Ca2+ influx in rat spinal cord-dorsal root ganglion cocultures. We have demonstrated that K+-induced depolarization, in the presence of the Ca2+ channel agonist Bay K8644, stimulated Ca2+ influx (3-4-fold) via the dihydropyridine class of voltage-dependent Ca2+ channels. While mu and delta opiates had no effect, kappa opiate agonists (e.g. U50488, dynorphin) profoundly depressed the stimulated Ca2+ influx (86% inhibition at 100 microM U50488). The kappa agonist action was stereospecific and could be reversed by the opiate antagonist naloxone. The inhibition produced by kappa agonists was greatly diminished following pertussis toxin treatment, and this effect was accompanied by toxin-induced ADP-ribosylation of a 40-41-kDa protein. This suggests that kappa opiate receptors are negatively coupled to voltage-dependent Ca2+ channels, via a pertussis toxin-sensitive GTP-binding protein. Basal 45Ca2+ uptake, stimulated by adenylate cyclase activators (forskolin and cholera toxin), was potently inhibited by kappa opiates suggesting that, under conditions of neurohormonal stimulation of adenylate cyclase, kappa receptors are coupled to Ca2+ channels indirectly via the adenylate cyclase complex. In addition, cAMP-independent coupling pathways may also be involved.  相似文献   

12.
We used 2,3-butanedione monoxime (BDM) to suppress work by the perfused rat heart and to investigate the effects of calcium on NADH production and tissue energetics. Hearts were perfused with buffer containing BDM and elevated perfusate calcium to maintain the rates of cardiac work and oxygen consumption at levels similar to those of control perfused hearts. BDM plus calcium hearts displayed higher levels of NADH surface fluorescence, indicating calcium activation of mitochondrial dehydrogenases. These hearts, however, displayed 20% lower phosphocreatine levels. BDM suppressed the rates of state 3 respiration of isolated mitochondria. Uncoupled respiration was suppressed to a lesser degree, and the state 4 respiration rates were not affected. Double-inhibitor experiments with liver mitochondria using BDM and carboxyatractyloside (CAT) were used to identify the site of inhibition. BDM at low levels (0-5 mM) suppressed respiration. In the presence of CAT at levels that inhibit respiration by 60%, low levels of BDM were without effect. Because these effects were not additive, BDM does not inhibit adenine nucleotide transport. This was supported by an assay of adenine nucleotide transport in liver mitochondria. BDM did not inhibit ATP hydrolysis by submitochondrial particles but strongly suppressed reversed electron transport from succinate to NAD(+). Oxidation of NADH by submitochondrial particles was inhibited by BDM but oxidation of succinate was not. We conclude that BDM inhibits electron transport at site 1.  相似文献   

13.
The potential involvement of vicinal dithiols in the expression of platelet-activating factor (AGEPC)- and A23187-induced alterations in rabbit platelets was explored through the use of phenylarsine oxide (PhAsO) and certain analogous derivatives. PhAsO (As3+) but not phenylarsonic acid (As5+) inhibited markedly at 1 microM concentration the release of arachidonic acid initiated by AGEPC and the ionophore A23187. In contrast, AGEPC-induced phosphatidic acid formation, phosphorylation of 40- and 20-kDa proteins, and Ca2+ uptake from external medium were not inhibited substantially by 1 microM PhAsO. However, these latter metabolic responses to AGEPC were inhibited by PhAsO at higher doses (10 microM). AGEPC- and thrombin-induced platelet aggregation and serotonin secretion also were prevented by PhAsO. The IC50 value of PhAsO was 2.7 +/- 1.2 microM toward AGEPC (5 X 10(-10) M)-induced serotonin release. Further, ATP and cAMP levels in PhAsO-treated platelets were not changed from controls. Interestingly, addition of Ca2+ to platelet sonicates (prepared in EDTA) caused diacylglycerol production and free arachidonic acid formation, even in the presence of 133 microM PhAsO. This would suggest that in the intact platelets PhAsO acted indirectly on phospholipase A2 and/or phospholipase C activities. Finally, a dithiol compound, 2,3-dimercaptopropanol, reversed the inhibition of platelet aggregation and arachidonic acid release effected by PhAsO. On the other hand, a monothiol compound, 2-mercaptoethanol, was not effective in preventing or in reversing the action of PhAsO. These observations suggest that vicinal sulfhydryl residues may be involved in stimulus-induced platelet activation.  相似文献   

14.
The possible involvement of a 15-kDa phosphotyrosyl protein, pp15, in insulin action was investigated by using the insulin-mimetic agent, vanadate. Vanadate, a phosphotyrosine phosphatase inhibitor, was found to mimic insulin in 3T3-L1 adipocytes by three criteria. First, kinetic and concentration-dependence studies verified the insulin-like effect of vanadate in activating 2-deoxyglucose uptake. Insulin had an additive activating effect at a submaximal vanadate concentration, but showed no further activation at a saturating vanadate concentration. The trivalent arsenical, phenylarsine oxide (PAO) which forms complexes with vicinal dithiols, markedly inhibited vanadate-activated hexose transport in agreement with our previous studies in which PAO abolished the insulin-activated component of sugar uptake. Second, in situ phosphorylation experiments showed that vanadate activated tyrosine phosphorylation of the insulin receptor's beta-subunit. Exposure of vanadate-treated cells to PAO further increased the level of beta-subunit phosphorylation. The increased level of phosphorylation in the presence of PAO occurred only on tyrosyl residues. Third, vanadate caused the accumulation of a phosphorylated 15-kDa protein in the presence of PAO, but not in its absence. The characteristics of this protein were identical to those of pp15: 1) both proteins behaved identically by two-dimensional gel electrophoresis, 2) digestion of both proteins with trypsin gave rise to apparently identical phosphopeptides, and 3) both proteins contained phosphotyrosine as the only phosphoamino acid. The results indicate that both vanadate and insulin stimulate the accumulation of pp15 in the presence of PAO. The dithiol,2,3-dimercaptopropanol, but not a monothiol, reversed the effects of PAO on the inhibition of vanadate-induced hexose transport and the accumulation of pp15, thus implicating a vicinal dithiol in these actions of vanadate and insulin. Our results support the hypothesis that turnover of the phosphoryl group of pp15, a product of insulin receptor tyrosine kinase action, is coupled to signal transmission to the glucose transport system.  相似文献   

15.
The pK and mid-point redox potential of the Q-analogue 7-(n-heptadecyl)mercapto-6-hydroxy-5,8-quinolinequinone (HMHQQ) in aqueous medium are so low that under the experimental conditions used for studying the inhibition of electron transfer in submitochondrial particles only the oxidized, anionic form is present. The KD of the analogue, determined by comparing its inhibitory effect with that of n-heptyl-4-hydroxyquinoline N-oxide, is (0.003 + 0.24 x mg protein/ml) microM. The inhibition of succinate oxidation is pH dependent, due to a pH-dependent change in the overcapacity of the QH2-oxidizing system above the Q-reducing system. If the terminal part of the respiratory chain is reduced with ascorbate, the analogue inhibits the reduction of cytochrome b by substrate in the presence of antimycin with a similar KD value. In the absence of ascorbate the KD value is 100-times higher. The reduction of cytochrome b by substrate in particles treated with 2,3-dimercaptopropanol (BAL) + O2 is also sensitive to HMHQQ, with a KD value in between the two values given above. It is concluded that the QH2 oxidase system contains two different sites for interaction with ubiquinone. The site responsible for the inhibition of steady-state electron transfer is near the Fe-S cluster, as is shown by the sensitivity to the redox state of this cluster and by the effect of HMHQQ on the EPR signal of the reduced cluster. The second site, which is similar to the antimycin-binding site, is occupied only at higher concentrations of inhibitor. The affinity of HMHQQ for this site is not affected by the redox state of the Fe-S cluster.  相似文献   

16.
The effect of three convulsants was tested in rat cortical synaptosomes by measuring Na+ and K+ movements and respiration. Penicillin (of its derivatives the 3-phenyl-5-methyl-4-isoxazolyl-penicillin, i.e. oxacillin was used) at 2 to 14 mM concentration prolonged the uptake phase of the K+-curve without altering final cation equilibrium. Pentylenetetrazol, at 10 to 50 mM exerted a concentration-dependent inhibitory effect on K+-uptake, while 3-aminopyridine was effective only at high concentrations (50 mM) preventing synaptosomal K+-uptake and increasing the synaptosomal Na+-content without, however, blocking respiration. The data suggest a transitional rise of K+-permeability of synaptosomal membrane in the presence of oxacillin, without lasting depolarization. Sufficient doses of 3-aminopyridine probably depolarize synaptosomes, the underlying mechanism probably being associated with the primary blocking of K+-channels and a subsequent increase in Na+ influx rather than with the inhibition of the Na+--K+-pump.  相似文献   

17.
The capacitative Ca2+ entry pathway in J774 macrophages is rapidly inhibited by the amino sugar glucosamine. This pathway is also inhibited by treatments such as 2-deoxy-D-glucose (2dGlc) or glucose deprivation that inhibit glycolysis and lead to significant decreases in cellular ATP and other trinucleotides. We sought to determine whether glucosamine's effect on capacitative Ca2+ entry was also due to ATP depletion, as has been suggested recently for its link to insulin resistance. In contrast to brief treatments with 2dGlc, there was no significant decrease in ATP following exposure to glucosamine. In addition, the 2dGlc-mediated inhibition of capacitative Ca2+ influx was reversed by staurosporine, a microbial alkaloid that inhibits a broad range of protein kinases. Staurosporine was also able to reverse the inhibition of capacitative Ca2+ entry seen following other treatments that decreased cellular ATP levels, including cytochalasin B and iodoacetic acid. Other inhibitors of protein kinase C, including bisindolylmaleimide, K252a, H-7, and calphostin C, were unable to mimic this effect of staurosporine. However, the inhibition of capacitative Ca2+ influx in the presence of glucosamine was not reversed by staurosporine. These data indicate that the inhibitory action on capacitative Ca2+ entry of glucosamine is distinct from that caused by ATP depletion.  相似文献   

18.
The rate of Cd accumulation by adult rat liver parenchymal cells in serum free primary culture in the presence of 100 μM CdCl2 was 10 times greater than that by non-parenchymal Kupffer cells. Addition of the monothiol chelating agents, cysteine and penicillamine, decreased Cd uptake in both cell types, the effect becoming more pronounced as the monothiol concentration was increased from 0.1 to 1.0 mM. These monothiols thus appear to reduce the availability of Cd for transport across the cell membrane. In contrast 1–10 molar excesses of the dithiol agents 2,3-dimercaptopropanol (BAL) or dithiothreitol (DTT) stimulated to variable extents the rate of Cd accumulation 2–10-fold in parenchymal cells and by over 100-fold in Kupffer cells. Supplementation of the media with 3% serum had little effect on the Cd accumulation in the presence of monothiols but substantially depressed Cd uptake in the presence of dithiols. Intravenous injection of Cd (0.05 mg/kg CdCl2) with up to a 10-fold molar excess of cysteine or penicillamine had little effect on the hepatocellular Cd distribution. However Cd uptake by non-parenchymal cells was increased markedly by the simultaneous administration of BAL or DTT in 2 or 10 molar excess. Evidence is provided that these results may be partially explained by the endocytosis, particularly in Kupffer cells, of colloidal complexes of Cd which are formed with the dithiols but not the monothiols. These observations demonstrate that the physicochemical form of Cd determines its hepatocellular distribution which may be an important factor in the manifestation of Cd toxicity after thiol treatment.  相似文献   

19.
Phenylarsine oxide (PAO), a trivalent arsenical, has been shown to inhibit insulin-stimulated glucose transport in 3T3-L1 adipocytes, implicating vicinal dithiols in signal transmission [Frost & Lane (1985) J. Biol. Chem. 260, 2646-2652]. To assist in the direct identification of a PAO-binding protein which might be involved in this process, we have synthesized [3H]acetylaminophenylarsine oxide [( 3H]APAO) from the amino derivative of phenylarsine oxide (NPAO). To assess the inhibitory effect of the product, a dual-labelling experiment was performed which showed that [3H]APAO inhibited insulin-stimulated 2-deoxy[1-14C]glucose transport in 3T3-L1 adipocytes with a Ki of 21 microM, identical with that of the parent compound, NPAO. Further characterization revealed that over a wide concentration range, uptake of the labelled arsine oxide was linear. Although the dithiol reagent 2,3-dimercaptopropanol (DMP) reversed PAO-induced inhibition of transport, it had no effect on the uptake of [3H]APAO. In a simple fractionation experiment approx. 50% of the radioactivity was associated with the cytosolic fraction and 50% with the total membrane fraction. Identification of radiolabelled proteins by non-reducing SDS/PAGE revealed fraction-specific binding, although many proteins were observed. Covalent modification was time-dependent and could be reversed by addition of DMP. These data further support a role for vicinal dithiols in insulin-stimulated glucose transport. Additionally, the probe described may offer a new means with which to identify the inhibitory protein or, more globally, to investigate mechanisms of action of vicinal dithiol-containing proteins.  相似文献   

20.
The direct addition of Cu2+ to unfertilized eggs of Mytilus edulis results in a stimulation of respiration with maximal stimulation occurring at a Cu2+ concentration of ca 0.5 mM. By contrast, the addition of Zn2+ has no effect on egg respiration. The uncoupler CCCP produces a 5/6 fold stimulation of egg respiration but the addition of ADP leads to only a small release of respiration. In contrast, sperm respiration is unaffected by Cu2+, inhibited by Zn2+ and CCCP produces only a small respiratory stimulation. The addition of Cu2+ to respiring Mytilus mantle tissue mitochondria produces an initial stimulation of State 4 oxidation which is then followed by a progressive inhibition. It is suggested that respiration in the unfertilized egg may be inhibited by a high ATP/ADP ratio in the cytosol. Respiration can, therefore, be released by either the addition of a H+-translocating uncoupler or by Cu2+ which may act by stimulating mitochondrial K+ influx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号