首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell envelope vesicles of Halobacterium halobium synthesize ATP by utilizing base-acid transition (an outside acidic pH jump) under optimal conditions (1 M NaCl, 80 mM MgCl2, pH 6.8) even in the presence of azide (a specific inhibitor of F0F1-ATPase) (Mukohata & Yoshida (1987) J. Biochem. 101, 311-318). An azide-insensitive ATPase was isolated from the inner face of the vesicle membrane, and shown to hydrolyze ATP under very specific conditions (1.5 M Na2SO4, 10 mM MnCl2, pH 5.8) (Nanba & Mukohata (1987) J. Biochem. 102, 591-598). This ATPase activity could also be detected when the vesicle components were solubilized by detergent. The relationship between ATP synthesis and the membrane-bound ATPase was investigated by modification of the vesicles with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) or N-ethylmaleimide (NEM). The inhibition pattern of ATP synthesis in the modified vesicles and that of ATP hydrolysis of the solubilized modified vesicles were compared under the individual optimum conditions. The inhibition patterns were almost identical, suggesting that the ATP synthesis and hydrolysis are catalyzed by a single enzyme complex. The ATP synthase includes the above ATPase (300-320 kDa), which is composed of two pairs of 86 and 64 kDa subunits. This is a novel H+-translocating ATP synthase functioning in the extremely halophilic archaebacterium. This "archae-ATP-synthase" differs from F0F1-ATPase/synthase, which had been thought to be ubiquitous among all respiring organisms on our biosphere.  相似文献   

2.
The H+-translocating ATP synthase of Halobacterium halobium (Y. Mukohata and M. Yoshida (1987) J. Biochem. 102, 797-802) includes a catalytic moiety of 320 kDa which is isolated as an azide-insensitive ATPase (T. Nanba and Y. Mukohata (1987) J. Biochem. 102, 591-598). The polyclonal antibody against this archaebacterial ATPase cross-reacts with the anion-sensitive H+-ATPase of red beet, Beta vulgaris, tonoplast as well as with another archaebacterial ATPase from Sulfolobus acidocaldarius. The affinity is much higher than to F1-ATPase from spinach chloroplasts or to Ca2+-ATPase from sarcoplasmic reticulum of rabbit skeletal muscle.  相似文献   

3.
The characteristics of ATP synthesis in cell envelope vesicles of Halobacterium halobium were further studied. The results confirmed the previous conclusion (Mukohata et al. (1986) J. Biochem. 99, 1-8) that the ATP synthase in this extremely halophilic archaebacterium can not be an ordinary type of F0F1-ATPase, which has been thought to be ubiquitous among all the aerobic organisms on our biosphere. The ATP synthesis was activated most in 1 M NaCl and/or KCl, and at 40 degrees C, and at 80 mM MgCl2 where F0F1-ATPase loses its activity completely. The synthesis was negligible at 10 degrees C, and at 5 mM MgCl2. The Km for ADP was about 0.3 mM in the presence of 20 mM Pi, 1 M NaCl, 80 mM MgCl2, and 10 mM PIPES at pH 6.8 and 20 degrees C. The ATP synthesis was not inhibited by NaN3 and quercetin (specific inhibitors for F0F1-ATPase) or vanadate (for E1E2-ATPase) or ouabain (for Na+,K+-ATPase) or P1,P5-di(adenosine-5')pentaphosphate (AP5A, for adenylate kinase). The ATP synthesis was not inhibited by modification (pretreatment) with NaN3 or 5'-p-fluorosulfonylbenzoyladenosine (FSBA). On the contrary, the ATP synthesis was rather non-specifically inhibited by N-ethylmaleimide (NEM), trinitrobenzenesulfonate (TNBS), phenylglyoxal, and pyridoxal phosphate. 7-Chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl) as well as N,N'-dicyclohexylcarbodiimide (DCCD) was found to be a specific inhibitor at least partly, because the NBD-Cl inhibition was partly prevented by ADP added to the modification mixture.  相似文献   

4.
Dimethylsulfoxide (Me2SO; 30%, v/v) promotes the formation of ATP from ADP and phosphate catalyzed by soluble mitochondrial F1 ATPase. The effects of this solvent on the adenine nucleotide binding properties of beef-heart mitochondrial F1 ATPase were examined. The ATP analog adenylyl-5'-imidodiphosphate bound to F1 at 1.9 and 1.0 sites in aqueous and Me2SO systems, respectively, with a KD value of 2.2 microM. Lower affinity sites were present also. Binding of ATP or adenylyl-5'-imidodiphosphate at levels near equimolar with the enzyme occurred to a greater extent in the absence of Me2SO. Addition of ATP to the nucleotide-loaded enzyme resulted in exchange of about one-half of the bound ATP. This occurred only in an entirely aqueous medium. ATP bound in Me2SO medium was not released by exogenous ATP. Comparison of the effect of different concentrations of Me2SO on ADP binding to F1 and ATP synthesis by the enzyme showed that binding of ADP was diminished by concentrations of Me2SO lower than those required to support ATP synthesis. However, one site could still be filled by ADP at concentrations of Me2SO optimal for ATP synthesis. This site is probably a noncatalytic site, since the nucleotide bound there was not converted to ATP in 30% Me2SO. The ATP synthesized by F1 in Me2SO originated from endogenous bound ADP. We conclude that 30% Me2SO affects the adenine nucleotide binding properties of the enzyme. The role of this in the promotion of the formation of ATP from ADP and phosphate is discussed.  相似文献   

5.
A purified ATPase associated with membranes from Halobacterium saccharovorum was compared with the F1 moiety from the Escherichia coli ATP synthase. The halobacterial enzyme was composed of two major (I and II) and two minor subunits (III and IV), whose molecular masses were 87 kDa, 60 kDa, 29 kDa and 20 kDa, respectively. The isoelectric points of these subunits ranged from 4.1 to 4.8, which in the case of the subunits I and II was consistent with the presence of an excess of acidic amino acids (20-22 mol/100 mol). Peptide mapping of subunits I and II denatured with sodium dodecyl sulfate showed no relationship between the primary structures of the individual halobacterial subunits or similarities to the subunits of the F1 ATPase from E. coli. Trypsin inactivation of the halobacterial ATPase was accompanied by the partial degradation of the major subunits. This observation, taken in conjunction with molecular masses of the subunits and the native enzyme, was consistent with the previously proposed stoichiometry of 2:2:1:1. These results suggest that H. saccharovorum, and possibly, halobacteria in general, possess an ATPase which is unlike the ubiquitous F0F1 ATP synthase.  相似文献   

6.
Yeast mitochondrial ATP synthase has three regulatory proteins, ATPase inhibitor, 9K protein, and 15K protein. The 9K protein binds directly to purified F1-ATPase, as does the ATPase inhibitor, but the 15K protein does not [Hashimoto, T. et al. (1987) J. Biochem. 102, 685-692]. In the present study, we found that 15K protein bound to purified F1F0-ATPase, forming an equimolar complex with the enzyme. The apparent dissociation constant was calculated to be 1.4 x 10(-5) M. The ATPase inhibitor and 9K protein also bound to F1F0-ATPase in the presence of ATP and Mg2+, and the dissociation constants of their bindings were about 3 X 10(-6) M. They bound to the enzyme competitively in the absence of 15K protein, but in its presence, they bound in equimolar amounts to the enzyme. The ATP-hydrolyzing activity of the enzyme-ligand complex was greatly influenced by the order of bindings of ATPase inhibitor and 9K protein: when the ATPase inhibitor was bound first, the activity of the enzyme was inhibited completely and was not restored by 9K protein, but when 9K protein was added first, the activity was inhibited only partially even after equimolar binding of the ATPase inhibitor to the enzyme. These observations strongly suggest that the 15K protein binds to the F0 part and functions to hold the ATPase inhibitor or 9K protein on the F1 subunit.  相似文献   

7.
1. Isolation of ATPase from rat liver submitochondrial particles by chloroform treatment requires the presence of ATP or ADP during enzyme solubilization. In the absence of adenine nucleotides the enzyme activity is very low although all protein components of F1-ATPase are released. The low concentrations of ATP or ADP required (5 microM) indicate that the high affinity nucleotide-binding sites are involved in enzyme stabilization. Other nucleotides tested (ITP, GTP, UTP, CTP) were found to be less effective. 2. Polyacrylamide gel electrophoresis and immunodiffusion in agar plates revealed that in the absence of adenine nucleotides a fraction of F1-ATPase released by chloroform treatment is split into fragments. The part of the dissociated enzyme molecule has a molecular weight identical with that of a beta-subunit of F1-ATPase. 3. Dissociation of the F1-ATPase molecule could also be prevented by aurovertin. 4. Crude F1-ATPase solubilized by chloroform treatment can be further purified by Sepharose 6B gel filtration. Specific ATPase activity of the purified enzyme was 90 mumol Pi/min per mg protein and the enzyme was composed of five protein subunits (alpha, beta, gamma, delta, epsilon) with molecular weights 58 000, 55 000, 28 000, 13 000 and 8000, respectively. 5. Chloroform-released F1-ATPase from rat liver mitochondria displayed immunochemical cross-reactivity with that isolated from beef heart mitochondria.  相似文献   

8.
F(0).F(1)-ATP synthase in tightly coupled inside-out vesicles derived from Paracoccus denitrificans catalyzes rapid respiration-supported ATP synthesis, whereas their ATPase activity is very low. In the present study, the conditions required to reveal the Deltamu(H+)-generating ATP hydrolase activity of the bacterial enzyme have been elucidated. Energization of the membranes by respiration results in strong activation of the venturicidin-sensitive ATP hydrolysis, which is coupled with generation of Deltam?(H+). Partial uncoupling stimulates the proton-translocating ATP hydrolysis, whereas complete uncoupling results in inhibition of the ATPase activity. The presence of inorganic phosphate is indispensable for the steady-state turnover of the Deltam?(H+)-activated ATPase. The collapse of Deltam?(H+) brings about rapid deactivation of the enzyme, which has been subjected to pre-energization. The rate and extent of the deactivation depend on protein concentration, i.e. the more vesicles are present in the assay mixture, the higher the rate and extent of the deactivation is seen. Sulfite and the ADP-trapping system protect ATPase against the Deltam?(H+) collapse-induced deactivation, whereas phosphate delays the rate of deactivation. A low concentration of ADP (<1 microm) increases the rate of deactivation. Taken together, the results suggest that latent proton-translocating ATPase in P. denitrificans is kinetically equivalent to the previously characterized ADP(Mg2+)-inhibited, azide-trapped bovine heart mitochondrial F(0).F(1)-ATPase (Galkin, M. A., and Vinogradov, A. D. (1999) FEBS Lett. 448, 123-126). A Deltam?(H+)-sensitive mechanism operates in P. denitrificans that prevents physiologically wasteful consumption of ATP by F(0).F(1)-ATPase (synthase) complex when the latter is unable to maintain certain value of Deltam?(H+).  相似文献   

9.
In contrast to everted mitochondrial inner membrane vesicles and eubacterial plasma membrane vesicles, the ATPase activity of chloroplast ATP synthase in thylakoid membranes is extremely low. Several treatments of thylakoids that unmask ATPase activity are known. Illumination of thylakoids that contain reduced ATP synthase (reduced thylakoids) promotes the hydrolysis of ATP in the dark. Incubation of thylakoids with trypsin can also elicit higher rates of ATPase activity. In this paper the properties of the ATPase activity of the ATP synthase in thylakoids treated with trypsin are compared with those of the ATPase activity in reduced thylakoids. The trypsin-treated membranes have significant ATPase activity in the presence of Ca2+, whereas the Ca2+-ATPase activity of reduced thylakoids is very low. The Mg2+-ATPase activity of the trypsinized thylakoids was only partially inhibited by the uncouplers, at concentrations that fully inhibit the ATPase activity of reduced membranes. Incubation of reduced thylakoids with ADP in Tris buffer prior to assay abolishes Mg2+-ATPase activity. The Mg2+-ATPase activity of trypsin-treated thylakoids was unaffected by incubation with ADP. Trypsin-treated membranes can make ATP at rates that are 75–80% of those of untreated thylakoids. The Mg2+-ATPase activity of trypsin-treated thylakoids is coupled to inward proton translocation and 10 mM sulfite stimulates both proton uptake and ATP hydrolysis. It is concluded that cleavage of the γ subunit of the ATP synthase by trypsin prevents inhibition of ATPase activity by the ε subunit, but only partially overcomes inhibition by Mg2+ and ADP during assay.  相似文献   

10.
The extent of stimulation of the hydrolytic activity of mitochondrial ATPase by the reducing agent dithionite has been found to depend on substrate concentration both for the membrane bound enzyme and for the isolated and purified F1ATPase. The results suggest the existence of three catalytic sites differing in their standard reduction potential. The activating effect of free ATP on the hydrolytic activity of rat liver F1-ATPase has been found to be more pronounced on the reduced form of the enzyme. On the contrary, the inhibitory effect of ADP was higher on the oxidized form of F1-ATPase. Citrate has also been found to be an inhibitor of F1-ATPase; its effect was more pronounced on the reduced form of the enzyme, and exhibited a competitive pattern of inhibition with respect to free ATP. The results obtained have been interpreted in the sense that free ATP and ADP may be modifying the standard reduction potential of the enzyme, and suggest the existence of three independent redox cycles in ATPase governed by the exchange of ADP and Pi for the newly synthesized ATP.  相似文献   

11.
Beef-heart mitochondrial F1 ATPase can be induced to synthesize ATP from ADP and inorganic phosphate in 30% Me2SO. We have analyzed the adenine nucleotide content of the F1 ATPase during the time-course of ATP synthesis, in the absence of added medium nucleotide, and in the absence and presence of 10 mM inorganic phosphate. The enzyme used in these investigations was either pretreated or not pretreated with ATP to produce F1 with a defined nucleotide content and catalytic or noncatalytic nucleotide-binding site occupancy. We show that the mechanism of ATP synthesis in Me2SO involves (i) an initial rapid loss of bound nucleotide(s), this process being strongly influenced by inorganic phosphate; (ii) a rebinding of lost nucleotide; and (iii) synthesis of ATP from bound ADP and inorganic phosphate.  相似文献   

12.
The chloroplast-type F(1) ATPase is the key enzyme of energy conversion in chloroplasts, and is regulated by the endogenous inhibitor epsilon, tightly bound ADP, the membrane potential and the redox state of the gamma subunit. In order to understand the molecular mechanism of epsilon inhibition, we constructed an expression system for the alpha(3)beta(3)gamma subcomplex in thermophilic cyanobacteria allowing thorough investigation of epsilon inhibition. epsilon Inhibition was found to be ATP-independent, and different to that observed for bacterial F(1)-ATPase. The role of the additional region on the gamma subunit of chloroplast-type F(1)-ATPase in epsilon inhibition was also determined. By single molecule rotation analysis, we succeeded in assigning the pausing angular position of gamma in epsilon inhibition, which was found to be identical to that observed for ATP hydrolysis, product release and ADP inhibition, but distinctly different from the waiting position for ATP binding. These results suggest that the epsilon subunit of chloroplast-type ATP synthase plays an important regulator for the rotary motor enzyme, thus preventing wasteful ATP hydrolysis.  相似文献   

13.
A Strid  P Nyrén 《Biochemistry》1989,28(25):9718-9724
Divalent cations are divided into two groups in relation to their ability to promote ATP synthase catalyzed reactions. In the presence of Mg2+, the following pattern rules: (i) uncoupler-stimulated ATP hydrolysis of Rhodospirillum rubrum chromatophores which shows an optimum concentration of the divalent cation; (ii) ATP-induced proton pumping in chromatophores; (iii) light-induced ATP synthesis in chromatophores; (iv) no or very low ATPase activity of purified F1-ATPase unmasked by diethylstilbestrol or n-octyl beta-D-glucopyranoside. In the presence of Ca2+, the following pattern occurs: (i) no stimulation of the ATP hydrolysis in chromatophores by carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone; (ii) no ATP-induced proton pumping; (iii) no light-induced ATP synthesis; (iv) a high ATPase activity of the purified F1-ATPase which is inhibited by diethylstilbestrol and n-octyl beta-D-glucopyranoside. Co2+, Mn2+, and Zn2+ are members of the "Mg2+-group", whereas Cd2+ is suggested to fall between the two groups. Intrinsic uncoupling of the membrane-bound ATP synthase has been suggested to account for the effect caused by Ca2+ in chloroplasts [Pick, U., & Weiss, M. (1988) Eur. J. Biochem. 173, 623-628]. Such an interpretation is consistent with our results on chromatophores. The uncoupling cannot occur at the level of the membrane since neither light-induced nor Mg-ATP-induced proton pumping is affected by Ca2+. A conformational change is suggested to be the reason for this intrinsic uncoupling, and it is proposed to be controlled by the diameters of the divalent cations (Ca2+ greater than Cd2+ greater than Mn2+ greater than Co2+ greater than Zn2+ greater than Mg2+).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The binding of ATP radiolabeled in the adenine ring or in the gamma- or alpha-phosphate to F1-ATPase in complex with the endogenous inhibitor protein was measured in bovine heart submitochondrial particles by filtration in Sephadex centrifuge columns or by Millipore filtration techniques. These particles had 0.44 +/- 0.05 nmol of F1 mg-1 as determined by the method of Ferguson et al. [(1976) Biochem. J. 153, 347]. By incubation of the particles with 50 microM ATP, and low magnesium concentrations (less than 0.1 microM MgATP), it was possible to observe that 3.5 mol of [gamma-32P]ATP was tightly bound per mole of F1 before the completion of one catalytic cycle. With [gamma-32P]ITP, only one tight binding site was detected. Half-maximal binding of adenine nucleotides took place with about 10 microM. All the bound radioactive nucleotides were released from the enzyme after a chase with cold ATP or ADP; 1.5 sites exchanged with a rate constant of 2.8 s-1 and 2 with a rate constant of 0.45 s-1. Only one of the tightly bound adenine nucleotides was released by 1 mM ITP; the rate constant was 3.2 s-1. It was also observed that two of the bound [gamma-32P]ATP were slowly hydrolyzed after removal of medium ATP; when the same experiment was repeated with [alpha-32P]ATP, all the label remained bound to F1, suggesting that ADP remained bound after completion of ATP hydrolysis. Particles in which the natural ATPase inhibitor protein had been released bound tightly only one adenine nucleotide per enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The recent finding that the presence of ATP at non-catalytic sites of chloroplast F1-ATPase (CF1) is necessary for ATPase activity (Milgrom, Y. M., Ehler, L. L., and Boyer, P. D. (1990) J. Biol. Chem. 265,18725-18728) prompted more detailed studies of the effect of noncatalytic site nucleotides on catalysis. CF1 containing at noncatalytic sites less than one ADP or about two ATP was prepared by heat activation in the absence of Mg2+ and in the presence of ADP or ATP, respectively. After removal of medium nucleotides, the CF1 preparations were used for measurement of the time course of nucleotide binding from 10 to 100 microM concentrations of 3H-labeled ADP, ATP, or GTP. The presence of Mg2+ strongly promotes the tight binding of ADP and ATP at noncatalytic sites. For example, the ADP-heat-activated enzyme in presence of 1 mM Mg2+ binds ADP with a rate constant of 0.5 x 10(6) M-1 min-1 to give an enzyme with two ADP at noncatalytic sites with a Kd of about 0.1 microM. Upon exposure to Mg2+ and ATP the vacant noncatalytic site binds an ATP rapidly and, as an ADP slowly dissociates, a second ATP binds. The binding correlates with an increase in the ATPase activity. In contrast the tight binding of [3H]GTP to noncatalytic sites gives an enzyme with no ATPase activity. The three noncatalytic sites differ in their binding properties. The noncatalytic site that remains vacant after the ADP-heat-activated CF1 is exposed to Mg2+ and ADP and that can bind ATP rapidly is designated as site A; the site that fills with ATP as ADP dissociates when this enzyme is exposed to Mg2+ and ATP is called site B, and the site to which ADP remains bound is called site C. Procedures are given for attaining CF1 with ADP at sites B and C, with GTP at sites A and/or B, and with ATP at sites A, B, and/or C, and catalytic activities of such preparations are measured. For example, little or no ATPase activity is found unless ATP is at site A, but ADP can remain at site C with no effect on ATPase. Maximal GTPase activity requires ATP at site A but about one-fifth of maximal GTPase is attained when GTP is at sites A and B and ATP at site C. Noncatalytic site occupancy can thus have profound effects on the ATPase and GTPase activities of CF1.  相似文献   

16.
Zharova TV  Vinogradov AD 《Biochemistry》2006,45(48):14552-14558
The presence of medium Pi (half-maximal concentration of 20 microM at pH 8.0) was found to be required for the prevention of the rapid decline in the rate of proton-motive force (pmf)-induced ATP hydrolysis by Fo.F1 ATP synthase in coupled vesicles derived from Paracoccus denitrificans. The initial rate of the reaction was independent of Pi. The apparent affinity of Pi for its "ATPase-protecting" site was strongly decreased with partial uncoupling of the vesicles. Pi did not reactivate ATPase when added after complete time-dependent deactivation during the enzyme turnover. Arsenate and sulfate, which was shown to compete with Pi when Fo.F1 catalyzed oxidative phosphorylation, substituted for Pi as the protectors of ATPase against the turnover-dependent deactivation. Under conditions where the enzyme turnover was not permitted (no ATP was present), Pi was not required for the pmf-induced activation of ATPase, whereas the presence of medium Pi (or sulfate) delayed the spontaneous deactivation of the enzyme which was induced by the membrane de-energization. The data are interpreted to suggest that coupled and uncoupled ATP hydrolysis catalyzed by Fo.F1 ATP synthases proceeds via different intermediates. Pi dissociates after ADP if the coupling membrane is energized (no E.ADP intermediate exists). Pi dissociates before ADP during uncoupled ATP hydrolysis, leaving the E.ADP intermediate which is transformed into the inactive ADP(Mg2+)-inhibited form of the enzyme (latent ATPase).  相似文献   

17.
The epsilon subunit of Escherichia coli F1-ATPase is a tightly bound but dissociable partial inhibitor of ATPase activity. The effects of epsilon on the enzyme were investigated by comparing the ATPase activity and aurovertin binding properties of the epsilon-depleted F1-ATPase and the epsilon-replete complex. Kinetic data of multisite ATP hydrolysis were analyzed to give the best fit for one, two, or three kinetic components. Each form of F1-ATPase contained a high-affinity component, with a Km near 20 microM and a velocity of approximately 1 unit/mg. Each also exhibited a component with a Km in the range of 0.2 mM. The velocity of this component was 25 units/mg for epsilon-depleted ATPase but only 4 units/mg for epsilon-replete enzyme. The epsilon-depleted enzyme also contained a very low affinity component not present in the epsilon-replete enzyme. In unisite hydrolysis studies, epsilon had no effect on the equilibrium between substrate ATP and product ADP.P1 at the active site but reduced the rate of product release 15-fold. These results suggest that epsilon subunit slows a conformational change that is required to reduce the affinity at the active site, allowing dissociation of product. It is suggested that inhibition of multisite hydrolysis by epsilon is also due to a reduced rate of product release. epsilon-depleted F1-ATPase showed little of no modulation of aurovertin fluorescence by added ADP and ATP. Aurovertin fluorescence titrations in buffer containing ethylenediaminetetraacetic acid (EDTA) revealed that epsilon-depleted enzyme had high affinity for aurovertin (Kd less than 0.1 microM) regardless of the presence of nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Treatment of isolated factor F1 by 1% dimethylsuberimidate in the presence of 50 mM (NH4)2SO4 leads to the formation of four different types of cross-linked dimers of the subunits, on average one dimer per molecule of the enzyme. This treatment results in 60-70% inactivation of factor F1. Factor F1 treated with dimethylsuberimidate does not show a change in the sedimentation coefficient and is not inactivated in the cold; it is not inactivated in the presence of Mg2+ either, nor is it activated by anions. Incubation of the cross-linked factor F1 with ADP does not lead to inactivation, although the ability to tightly bind ADP is retained. The total quantity of tightly bound ADP reaches 5 mol per mol of the cross-linked factor F1. Cross-linking of factor F1 also prevents the slow inactivation of the enzyme coupled with the hydrolysis of Mg-ATP and Mg-GTP. The dependence of the inactivation rate constant on the concentration of Mg-ATP and Mg-GTP at substrate concentrations of 0.05-2 mM is characterized by the same values of Km,app as those of the ATPase and GTPase activities of factor F1. The probability of the inactivation of factor F1 per turnover remains constant for all the concentrations of the substrates studied and is 2 . 10(-6) per turnover for the ATPase reaction and 2 . 10(-5) per turnover for the GTPase reaction. Moderate hydrostatic pressure (up to 150 atmospheres) greatly accelerates ATP-induced inactivation of factor F1. The activation volume (delta V*) of the inactivation process is equal to 5.1 . 10(-4) cm3/g, which is evidence of considerable changes in the extent of protein hydration during inactivation. Inactivation of the enzyme under pressure is accompanied by dissociation into subunits. Dimethyladipimidate, which does not cause intersubunit cross-linking in the molecule of factor F1, does not alter the properties of the native enzyme. It is suggested that the formation of one intersubunit cross-link in the molecule of factor F1 by dimethylsuberimidate affects the ability of the enzyme to undergo co-operative rearrangements of the quaternary structure under the influence of Mg2+, ADP, ATP, anions, and low temperature. The rate constants of ATP binding to the active site of factor F2 (k+1) = 2 . 10(8) M-1 . min-1), of ATP release from the active site (k-1 = 2 . 10(-2) min-1), and of ADP and Pi release from the active site (k2 = 5 . 10(3) min-1) have been determined. The results obtained confirm the correctness of Boyer's idea, according to which ATP is formed in the active site of mitochondrial ATPase without any external source of energy. Energy is used at the stage of the release of synthesized ATP from the active site of ATPase in the solution.  相似文献   

19.
Fo.F1-ATP synthase in inside-out coupled vesicles derived from Paracoccus denitrificans catalyzes Pi-dependent proton-translocating ATPase reaction if exposed to prior energization that relieves ADP.Mg2+ -induced inhibition (Zharova, T.V. and Vinogradov, A.D. (2004) J. Biol. Chem.,279, 12319-12324). Here we present evidence that the presence of medium ADP is required for the steady-state energetically self-sustained coupled ATP hydrolysis. The initial rapid ATPase activity is declined to a certain level if the reaction proceeds in the presence of the ADP-consuming, ATP-regenerating system (pyruvate kinase/phosphoenol pyruvate). The rate and extent of the enzyme de-activation are inversely proportional to the steady-state ADP concentration, which is altered by various amounts of pyruvate kinase at constant ATPase level. The half-maximal rate of stationary ATP hydrolysis is reached at an ADP concentration of 8 x 10(-6) M. The kinetic scheme is proposed explaining the requirement of the reaction products (ADP and Pi), the substrates of ATP synthesis, in the medium for proton-translocating ATP hydrolysis by P. denitrificans Fo.F1-ATP synthase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号