首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The gene associated with cystic fibrosis (CF) encodes a membrane-associated, N-linked glycoprotein called CFTR. Mutations were introduced into CFTR at residues known to be altered in CF chromosomes and in residues believed to play a role in its function. Examination of the various mutant proteins in COS-7 cells indicated that mature, fully glycosylated CFTR was absent from cells containing delta F508, delta 1507, K464M, F508R, and S5491 cDNA plasmids. Instead, an incompletely glycosylated version of the protein was detected. We propose that the mutant versions of CFTR are recognized as abnormal and remain incompletely processed in the endoplasmic reticulum where they are subsequently degraded. Since mutations with this phenotype represent at least 70% of known CF chromosomes, we argue that the molecular basis of most cystic fibrosis is the absence of mature CFTR at the correct cellular location.  相似文献   

2.
A mouse model for the cystic fibrosis delta F508 mutation.   总被引:2,自引:0,他引:2       下载免费PDF全文
Most cystic fibrosis (CF) patients produce a mutant form (delta F508) of the cystic fibrosis transmembrane conductance regulator (CFTR), which is not properly processed in normal cells but is active as a chloride channel in several experimental systems. We used a double homologous recombination ('Hit and Run') procedure to generate a mouse model for the delta F508 mutation. Targeted embryonic stem (ES) cells (Hit clones) were found; of these either 80 or 20% of the clones had lost the delta F508 mutation, depending on the distance between the linearization site in the targeting construct and the delta F508 mutation. Correctly targeted clones underwent a second selection step resulting in ES cell clones (Run clones) heterozygous for the delta F508 mutation with an efficiency of 2-7%. Chimeric mice were generated and offspring homozygous for the delta F508 mutation showed electrophysiological abnormalities in nasal epithelium, gallbladder and in the intestine, and histological abnormalities in the intestine, typical of CF. Our data suggest that the delta F508 mice have residual delta F508 CFTR activity which would explain the mild pathology of the delta F508 mice. The delta F508 mouse may provide a useful model for the study of the processing defect of delta F508 CFTR and for the development of novel therapeutic approaches based on circumvention of the processing block.  相似文献   

3.
In cystic fibrosis (CF), the most frequent mutant variant of the cystic fibrosis transmembrane conductance regulator (CFTR), F508del-CFTR protein, is misfolded and retained in the endoplasmic reticulum (ER). We previously showed that the unfolded protein response (UPR) may be triggered in CF. Since prolonged UPR activation leads to apoptosis via the calcium-calpain-caspase-12-caspase-3 cascade and because apoptosis is altered in CF, our aim was to compare the ER stress-induced apoptosis pathway between wild type (Wt) and F508del-CFTR expressing cells. Here we show that the calcium-calpain-caspase-12-caspase-3 cascade is altered in F508del-CFTR expressing cells. We propose that this alteration is involved in the altered apoptosis triggering observed in CF.  相似文献   

4.
The Hutterite population is a genetic isolate with an increased incidence of cystic fibrosis (CF). Previously we identified three CF haplotypes defined by polymorphisms flanking the CF transmembrane conductance regulator (CFTR) gene. delta F508 was present on one of the haplotypes in only 35% of CF chromosomes. We hypothesized that the other two CF haplotypes, one of which was the most common and the other of which is rare, each harbored different non-delta F508 mutations. Single-strand conformation polymorphism analysis detected a missense mutation, M1101K, in both chromosomes of a Hutterite patient carrying the two non-delta F508 haplotypes. M1101K appears to have originated on an uncommon CFTR allele and to be infrequent outside the Hutterite population. The presence of M1101K on two haplotypes is likely the result of a CFTR intragenic recombination which occurred since the founding, 10-12 generations ago, of the Hutterite population. The crossover was located between exons 14a and 17b, an interval of approximately 15 kbp. delta F508 and M1101K accounted for all of the CF mutations in patients from 16 CF families representing the three subdivisions of the Hutterite population.  相似文献   

5.
《Autophagy》2013,9(9):1431-1434
Cystic fibrosis (CF) is most frequently due to homozygous ΔF508-CFTR mutation. The ΔF508-CFTR protein is unstable in the plasma membrane (PM), even if it is rescued by pharmacological agents that prevent its intracellular retention and degradation. Restoring defective autophagy in CF airways by proteostasis regulators (such as cystamine and its reduced form, cysteamine) can rescue and stabilize ΔF508-CFTR at the PM, thus enabling the action of CFTR potentiators, which are pharmacological agents that stimulate the function of CFTR as an ion channel. The effects of cystamine extend for days (in vitro) and weeks (in vivo) beyond washout, suggesting that once peripheral proteostasis has been re-established, PM-resident ΔF508-CFTR sustains its own stability. We demonstrated that the pharmacological inhibition of wild-type CFTR [cystic fibrosis transmembrane conductance regulator (ATP-binding cassette subfamily C, member 7)], in bronchial epithelial cells decreases the stability of the CFTR protein by inhibiting autophagy, elevating the abundance of SQSTM1/p62 and its interaction with CFTR at the PM, increasing the ubiqutination of CFTR, stimulating the lysosomal degradation of CFTR and avoiding its recycling. All these effects could be inhibited by cystamine. Moreover, CFTR-sufficient epithelia generate permissive conditions for incorporating ΔF508-CFTR into the PM and stabilizing it at this location. These results provide the rationale for a combination therapy of CF in which pretreatment with cystamine or cysteamine enables the later action of CFTR potentiators.  相似文献   

6.
The glycine-to-aspartic acid missense mutation at codon 551 (G551D), which is within the first nucleotide-binding fold of the cystic fibrosis transmembrane conductance regulator (CFTR), is the third most common cystic fibrosis (CF) mutation, with a worldwide frequency of 3.1% among CF chromosomes. Regions with a high frequency correspond to areas with large populations of Celtic descent. To determine whether G551D confers a different phenotype than does delta F508, the most common CF mutation, we studied 79 compound heterozygotes for G551D/delta F508, from nine centers in Europe and North America. Each subject was matched, by age and sex, with a delta F508 homozygote from the same center. A retrospective cohort analysis was performed on the following outcome parameters: age at diagnosis, sweat chloride, meconium ileus at birth, height, weight, weight for height, FVC, FEV1, chest X-ray score, pseudomonas colonization, pancreatic sufficiency, and Shwachman clinical score. There was less meconium ileus among the G551D/delta F508 compound heterozygotes (relative risk 0.33; 95% confidence interval .13-.86), as well as a trend toward later age at diagnosis of pancreatic insufficiency. No statistically significant difference was found between the groups for any other parameter. These results suggest that the CF genotype can be a predictor of pancreatic and intestinal phenotype. Prenatal counseling for the two genotype groups should differ only with respect to probability of meconium ileus. Clinical outcome (after survival of meconium ileus) for G551D/delta F508 compound heterozygotes and delta F508 homozygotes is indistinguishable; therefore, prognostic counseling should not differ.  相似文献   

7.
The most common cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation is ΔF508, and this causes cystic fibrosis (CF). New CF models in the pig and ferret have been generated that develop lung, pancreatic, liver, and intestinal pathologies that reflect disease in CF patients. Species-specific biology in the processing of CFTR has demonstrated that pig and mouse ΔF508-CFTR proteins are more effectively processed to the apical membrane of airway epithelia than human ΔF508-CFTR. The processing behavior of ferret WT- and ΔF508-CFTR proteins remains unknown, and such information is important to predicting the utility of a ΔF508-CFTR ferret. To this end, we sought to compare processing, membrane stability, and function of human and ferret WT- and ΔF508-CFTR proteins in a heterologous expression system using HT1080, HEK293T, BHK21, and Cos7 cells as well as human and ferret CF polarized airway epithelia. Analysis of the protein processing and stability by metabolic pulse-chase and surface On-Cell Western blots revealed that WT-fCFTR half-life and membrane stability were increased relative to WT-hCFTR. Furthermore, in BHK21, Cos7, and CuFi cells, human and ferret ΔF508-CFTR processing was negligible, whereas low levels of processing of ΔF508-fCFTR could be seen in HT1080 and HEK293T cells. Only the WT-fCFTR, but not ΔF508-fCFTR, produced functional cAMP-inducible chloride currents in both CF human and ferret airway epithelia. Further elucidation of the mechanism responsible for elevated fCFTR protein stability may lead to new therapeutic approaches to augment CFTR function. These findings also suggest that generation of a ferret CFTR(ΔF508/ΔF508) animal model may be useful.  相似文献   

8.
The most common defect in cystic fibrosis, deletion of phenylalanine from position 508 of the cystic fibrosis transmembrane conductance regulator (Delta F508 CFTR), decreases the trafficking of this protein to the cell surface membrane. Previous studies have shown that low temperature and high concentrations of glycerol or trimethylamine N-oxide can partially counteract the processing defect of Delta F508 CFTR. The present study investigates whether physiologically relevant concentrations of organic solutes, accumulated by cotransporter proteins, can rescue the misprocessing of Delta F508 CFTR. Myoinositol alone or myoinositol, betaine, and taurine given sequentially increased the processing of core-glycosylated, endoplasmic reticulum-arrested Delta F508 CFTR into the fully glycosylated form of CFTR in IB3 cells or NIH 3T3 cells stably expressing Delta F508 CFTR. Pulse-chase experiments using transiently transfected COS7 cells demonstrated that organic solutes also increased the processing of the core-glycosylated form of green fluorescent protein-Delta F508 CFTR. Moreover, the prolonged half-life of the complex-glycosylated form of GFP-Delta F508 CFTR suggests that this treatment stabilized the mature form of the protein. In vitro studies of purified NBD1 stability and aggregation showed that myoinositol stabilized both the Delta F508 and wild type CFTR and inhibited Delta F508 misfolding. Most significantly, treatment of CF bronchial airway cells with these transportable organic solutes restores cAMP-stimulated single channel activity of both CFTR and outwardly rectifying chloride channel in the cell surface membrane and also restores a forskolin-stimulated macroscopic 36Cl- efflux. We conclude that organic solutes can repair CFTR functions by enhancing the processing of Delta F508 CFTR to the plasma membrane by stabilizing the complex-glycosylated form of Delta F508 CFTR.  相似文献   

9.
mRNA analysis of the cystic fibrosis transmembrane regulator (CFTR) gene in tissues of cystic fibrosis (CF) patients has allowed us to detect a cryptic exon. The new exon involves 49 base pairs between exons 11 and 12 and is due to a point mutation (1811+1.6kbA-->G) that creates a new donor splice site in intron 11. Semiquantitative mRNA analysis showed that 1811+1.6kbA-->G-mRNA was 5-10-fold less abundant than delta F508 mRNA. Mutation 1811+1.6kbA-->G was found in 21 Spanish and 1 German CF chromosomes, making it the fourth-most-frequent mutation (2%) in the Spanish population. Individuals with genotype delta F508/1811+1.6kbA-->G have only 1%-3% of normal CFTR mRNA. This loss of 97% of normal CFTR mRNA must be responsible for the pancreatic insufficiency and for the severe CF phenotype in these patients.  相似文献   

10.
Cystic fibrosis (CF) is an autosomal disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR). Neonatal meconium ileus (MI) occurs in 10-20 percent of newborns with CF. The purpose of this study was to determine the allelic frequencies of the CF mutation in French patients with and without MI and the incidence of MI in 7 homozygotes or compound heterozygotes for mutation of the CFTR gene. Our study confirms the positive association between delta F508, the most frequent CF mutation, G542X mutation and MI and a negative association with G551D.  相似文献   

11.
Cystic fibrosis (CF) is caused by mutations in the apical chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) with 90% of patients carrying at least one deletion of the F508 (ΔF508) allele. This mutant form of CFTR is characterized by a folding and trafficking defect that prevents exit from the endoplasmic reticulum. We previously reported that ΔF508 CFTR can be recovered in a complex with Hsp90 and its co-chaperones as an on-pathway folding intermediate, suggesting that Δ508 CF disease arises due to a failure of the proteostasis network (PN), which manages protein folding and degradation in the cell. We have now examined the role of FK506-binding protein 8 (FKBP8), a component of the CFTR interactome, during the biogenesis of wild-type and ΔF508 CFTR. FKBP8 is a member of the peptidylprolyl isomerase family that mediates the cis/trans interconversion of peptidyl prolyl bonds. Our results suggest that FKBP8 is a key PN factor required at a post-Hsp90 step in CFTR biogenesis. In addition, changes in its expression level or alteration of its activity by a peptidylprolyl isomerase inhibitor alter CFTR stability and transport. We propose that CF is caused by the sequential failure of the prevailing PN pathway to stabilize ΔF508-CFTR for endoplasmic reticulum export, a pathway that can be therapeutically managed.  相似文献   

12.
Only about 30% of the cystic fibrosis chromosomes in the Israeli cystic fibrosis patient populations carry the major CF mutation (delta F508). Since different Jewish ethnic groups tended to live as closed isolates until recent times, high frequencies of specific mutations are expected among the remainder cystic fibrosis chromosomes of these ethnic groups. Genetic factors appear to influence the severity of the disease. It is therefore expected that different mutations will be associated with either severe or mild phenotype. Direct genomic sequencing of exons included in the two nucleotide-binding folds of the putative CFTR protein was performed on 119 Israeli cystic fibrosis patients from 97 families. One sequence alteration which is expected to create a termination at residue 1282 (W1282X) was found in 63 chromosomes. Of 95 chromosomes, 57 (60%) are of Ashkenazi origin. Together with the delta F508 (23% in this group), G542X, N1303K, and 1717-1G----A mutations, the identification of 92% of cystic fibrosis chromosomes of Ashkenazi origin becomes possible. Patients homozygous for the W1282X mutation (n = 16) and patients heterozygous for the delta F508 and W1282X mutations (n = 22) had similarly severe disease, reflected by pancreatic insufficiency, high incidence of meconium ileus (37% and 27%, respectively), early age at diagnosis, poor nutritional status, and variable pulmonary function. In conclusion, the W1282X mutation is the most common cystic fibrosis mutation in the Ashkenazi Jewish patient population in Israel. This nonsense mutation is associated with presentation of severe disease.  相似文献   

13.
We showed elsewhere that the pancreatic function status of cystic fibrosis (CF) patients could be correlated to mutations in the CF transmembrane conductance regulator (CFTR) gene. Although the majority of CF mutations--including the most common, delta F508--strongly correlated with pancreatic insufficiency (PI), approximately 10% of the mutant alleles may confer pancreatic sufficiency (PS). To extend this observation, genomic DNA of 538 CF patients with well-documented pancreatic function status were analyzed for a series of known mutations in their CFTR genes. Only 20 of the 25 mutations tested were found in this population. They accounted for 84% of the CF chromosomes, with delta F508 being the most frequent (71%), and the other mutations accounted for less than 5% each. A total of 30 different, complete genotypes could be determined in 394 (73%) of the patients. The data showed that each genotype was associated only with PI or only with PS, but not with both. This result is thus consistent with the hypothesis that PI and PS in CF are predisposed by the genotype at the CFTR locus; the PS phenotype occurs in patients who have one or two mild CFTR mutations, such as R117H, R334W, R347P, A455E, and P574H, whereas the PI phenotype occurs in patients with two severe alleles, such as delta F508, delta I507, Q493X, G542X, R553X, W1282X, 621 + 1G----T, 1717-1G----A, 556delA, 3659delC, I148T, G480C, V520F, G551D, and R560T.  相似文献   

14.
Cystic fibrosis (CF) is caused by mutations in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). The most common mutation responsible for CF is the deletion of amino acid residue Phe508, with an average allelic frequency of 70%. We have isolated an anti-CFTR monoclonal antibody which specifically recognizes recombinant normal and delta Phe508-CFTR produced by a vaccinia virus expression system. Immunocytochemical analysis of L cells expressing either normal or delta Phe508-CFTR showed a marked difference in subcellular distribution. Normal CFTR had a distinct localization in the perinuclear area and was also associated with the plasma membrane. delta Phe508-CFTR essentially lacked the membrane-associated distribution and was present throughout the cytoplasm. This heterologous expression system thus provides a model system for studying the subcellular localization of different mutant forms of CFTR.  相似文献   

15.
An imbalance of chloride and sodium ion transport in several epithelia is a feature of cystic fibrosis (CF), an inherited disease that is a consequence of mutations in the cftr gene. The cftr gene codes for a Cl(-) channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Some mutations in this gene cause the balance between Cl(-) secretion and Na(+) absorption to be disturbed in the airways; Cl(-) secretion is impaired, whereas Na(+) absorption is elevated. Enhanced Na(+) absorption through the epithelial sodium channel (ENaC) is attributed to the failure of mutated CFTR to restrict ENaC-mediated Na(+) transport. The mechanism of this regulation is controversial. Recently, we have found evidence for a close association of wild type (WT) CFTR and WT ENaC, further underscoring the role of ENaC along with CFTR in the pathophysiology of CF airway disease. In this study, we have examined the association of ENaC subunits with mutated ΔF508-CFTR, the most common mutation in CF. Deletion of phenylalanine at position 508 (ΔF508) prevents proper processing and targeting of CFTR to the plasma membrane. When ΔF508-CFTR and ENaC subunits were co-expressed in HEK293T cells, we found that individual ENaC subunits could be co-immunoprecipitated with ΔF508-CFTR, much like WT CFTR. However, when we evaluated the ΔF508-CFTR and ENaC association using fluorescence resonance energy transfer (FRET), FRET efficiencies were not significantly different from negative controls, suggesting that ΔF508-CFTR and ENaC are not in close proximity to each other under basal conditions. However, with partial correction of ΔF508-CFTR misprocessing by low temperature and chemical rescue, leading to surface expression as assessed by total internal reflection fluorescence (TIRF) microscopy, we observed a positive FRET signal. Our findings suggest that the ΔF508 mutation alters the close association of CFTR and ENaC.  相似文献   

16.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-dependent Cl(-) channel located in the plasma membrane, and its malfunction results in cystic fibrosis (CF), the most common lethal genetic disease in Caucasians. Most CF patients carry the deletion of Phe508 (ΔF508 mutation); this mutation prevents the delivery of the CFTR to its correct cellular location, the apical (lumen-facing) membrane of epithelial cells. Molecular chaperones play a central role in determining the fate of ΔF508-CFTR. In this report, we show that the Matrine, a quinolizidine alkaloid, downregulates the expression of the molecular chaperone HSC70 and increases the protein levels of ΔF508-CFTR in human alveolar basal epithelial cells (A549 cell line), stably transfected with a ΔF508-CFTR-expressing construct. Moreover, Matrine induced ΔF508-CFTR release from endoplasmic reticulum to cell cytosol and its localization on the cell membrane. Interestingly, downregulation of HSC70 resulted in increased levels of ΔF508-CFTR complexes with the co-chaperone BAG3 that in addition appeared to co-localize with the mutated protein on the cell surface. These results shed new light on ΔF508-CFTR interactions with proteins of the chaperones/co-chaperones system and could be useful in strategies for future medical treatments for CF.  相似文献   

17.
Cystic fibrosis (CF), the most common genetic disease among Caucasians, is caused by mutations in the gene encoding CFTR (cystic fibrosis transmembrane conductance regulator). The most frequent mutation, ΔF508, results in protein misfolding and, as a consequence, prevents CFTR from reaching its final location at the cell surface. CFTR is expressed in various cell types including red blood cells. The functional role of CFTR in erythrocytes is still unclear. Since the number of CFTR copies in a single erythrocyte of healthy donors and CF patients with a homozygous ΔF508 mutation is unknown, we counted CFTR, localized in erythrocyte plasma membrane, at the single molecule level. A novel experimental approach combining atomic force microscopy with quantum-dot-labeled anti-CFTR antibodies, used as topographic surface markers, was employed to detect individual CFTR molecules. Analysis of erythrocyte plasma membranes taken from healthy donors and CF patients with a homozygous ΔF508 mutation reveals mean (SEM) values of 698 (12.8) (n=542) and 172 (3.8) (n=538) CFTR molecules per red blood cell, respectively. We conclude that erythrocytes reflect the CFTR status of the organism and that quantification of CFTR in a blood sample could be useful in the diagnosis of CFTR related diseases.  相似文献   

18.
Affinity-purified polyclonal antibodies, raised against two synthetic peptides corresponding to the R domain and the C terminus of the human cystic fibrosis transmembrane conductance regulator (CFTR), were used to characterize and localize the protein in human epithelial cells. Employing an immunoblotting technique that ensures efficient detection of large hydrophobic proteins, both antibodies recognized and approximately 180-kDa protein in cell lysates and isolated membranes of airway epithelial cells from normal and cystic fibrosis (CF) patients and of T84 colon carcinoma cells. Reactivity with the anti-C terminus antibody, but not with the anti-R domain antibody, was eliminated by limited carboxypeptidase Y digestion. When normal CFTR cDNA was overexpressed via a retroviral vector in CF or normal airway epithelial cells or in mouse fibroblasts, the protein produced had an apparent molecular mass of about 180 kDa. The CFTR expressed in insect (Sf9) cells by a baculovirus vector had a molecular mass of about 140 kDa, probably representing a nonglycosylated form. The CFTR in epithelial cells appears to exist in several forms. N-glycosidase treatment of T84 cell membranes reduces the apparent molecular mass of the major CFTR band from 180 kDa to 140 kDa, but a fraction of the T84 cell CFTR could not be deglycosylated, and the CFTR in airway epithelial cell membranes could not be deglycosylated either. Moreover, wheat germ agglutinin absorbs the majority of the CFTR from detergent-solubilized T84 cell membranes but not from airway cell membranes. The CFTR in all epithelial cell types was found to be an integral membrane protein not solubilized by high salt or lithium diiodosalicylate treatment. Sucrose density gradient fractionation of crude membranes prepared from the airway epithelial cells, previously surface-labeled by enzymatic galactosidation, showed a plasma membrane localization for both the normal CFTR and the CFTR carrying the Phe508 deletion (delta F 508). The CFTR in all cases co-localized with the Na+, K(+)-ATPase and the plasma membrane calcium ATPase, while the endoplasmic reticulum calcium ATPase and mitochondrial membrane markers were enriched at higher sucrose densities. Thus, the CFTR appears to be localized in the plasma membrane both in normal and delta F 508 CF epithelial cells.  相似文献   

19.
Cystic fibrosis (CF), the most common lethal genetic disease in the Caucasian population, is caused by loss-of-function mutations of the CF transmembrane conductance regulator (CFTR), a cyclic AMP-regulated plasma membrane chloride channel. The most common mutation, deletion of phenylalanine 508 (ΔF508), impairs CFTR folding and, consequently, its biosynthetic and endocytic processing as well as chloride channel function. Pharmacological treatments may target the ΔF508 CFTR structural defect directly by binding to the mutant protein and/or indirectly by altering cellular protein homeostasis (proteostasis) to promote ΔF508 CFTR plasma membrane targeting and stability. This review discusses recent basic research aimed at elucidating the structural and trafficking defects of ΔF508 CFTR, a prerequisite for the rational design of CF therapy to correct the loss-of-function phenotype.  相似文献   

20.
In the vast majority of cystic fibrosis (CF) patients, deletion of residue F508 from CFTR is the cause of disease. F508 resides in the first nucleotide binding domain (NBD1) and its absence leads to CFTR misfolding and degradation. We show here that the primary folding defect arises during synthesis, as soon as NBD1 is translated. Introduction of either the I539T or G550E suppressor mutation in NBD1 partially rescues ΔF508 CFTR to the cell surface, but only I539T repaired ΔF508 NBD1. We demonstrated rescue of folding and stability of NBD1 from full-length ΔF508 CFTR expressed in cells to isolated purified domain. The co-translational rescue of ΔF508 NBD1 misfolding in CFTR by I539T advocates this domain as the most important drug target for cystic fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号