首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Flow cytometry is an invaluable technique in research and clinical laboratories. The technique has been applied extensively to many areas of radiation research at both the experimental and clinical level. In the past few years, there has been a significant increase in the capabilities of modern flow cytometers to undertake multicolor analysis in a user-friendly manner. The developments in cytometric technology are being matched by the rapid development of new reagents, new fluorochromes and new platforms such as bead arrays. These developments are facilitating many new applications in both basic and clinical research that have relevance for many fields of biology, including radiation research. This review provides a historical overview of the application of flow cytometry to radiobiology and an update on how technology and reagents have changed and cites examples of new applications relevant to radiation researchers. In addition, some entirely new flow instrumentation is currently under development that has significant potential for applications in radiation research.  相似文献   

2.
Cell-to-cell and long-distance trafficking of RNA is a rapidly evolving frontier of integrative plant biology that broadly impacts studies on plant growth and development, spread of infectious agents and plant defense responses. The fundamental questions being pursued at the forefronts revolve around function, mechanism and evolution. In the present review, we will first use specific examples to illustrate the biological importance of cell-to-cell and long-distance trafficking of RNA. We then focus our discussion on research findings obtained using viroids that have advanced our understanding of the underlying mechanisms involved in RNA trafficking. We further use viroid examples to illustrate the great diversity of trafficking machinery evolved by plants, as well as the promise for new insights in the years ahead. Finally, we discuss the prospect of integrating findings from different experimental systems to achieve a systems-based understanding of RNA trafficking function, mechanism and evolution.  相似文献   

3.
Mangel M  Bonsall MB 《PloS one》2008,3(2):e1591
Phenotypic evolutionary models have been used with great success in many areas of biology, but thus far have not been applied to the study of stem cells except for investigations of cancer. We develop a framework that allows such modeling techniques to be applied to stem cells more generally. The fundamental modeling structure is the stochastic kinetics of stem cells in their niche and of transit amplifying and fully differentiated cells elsewhere in the organism, with positive and negative feedback. This formulation allows graded signals to be turned into all or nothing responses, and shows the importance of looking beyond the niche for understanding how stem cells behave. Using the deterministic version of this framework, we show how competition between different stem cell lines can be analyzed, and under what circumstances stem cells in a niche will be replaced by other stem cells with different phenotypic characteristics. Using the stochastic version of our framework and state dependent life history theory, we show that the optimal behavior of a focal stem cell will involve long periods of quiescence and that a population of identical stem cells will show great variability in the times at which activity occurs; we compare our results with classic ones on quiescence and variability in the hematopoietic system.  相似文献   

4.
This meeting showed how the surge of research in the field of NO biology has led to novel therapeutic approaches in multiple clinical disciplines. Some approaches have already advanced towards clinical applications. Continued research efforts will undoubtedly lead to new applications.  相似文献   

5.
Risk assessment derives its confidence from toxicology research that is based on relevancy to human health. This article focuses on two highly topical areas of current scientific research, stem cells and chromatin biology, which present new avenues for preclinical and clinical applications, and the frontier role of tissue engineering and regeneration. Appreciating the utility and necessity of chromatin and human somatic stem cells as research tools and looking toward tissue engineering may close the uncertainty gaps between animal and human cross-species toxicology evaluations. The focus will be on developmental toxicology applications, but appropriate extrapolation to any other areas of toxicology can be made. We further provide background on basic biology of these three areas and examples of how early life exposure to known and potential environmental toxicants induce malformations, childhood and adult-onset diseases, through aberrant chromatin modification of critical gene expressions (acute lymphocyte leukemia, heavy-metal nickel and cadmium-associated defects, and reproductive tract malformations and carcinomas induced by the synthetic estrogen, diethylstilbestrol).  相似文献   

6.
MOLECULAR PALAEOBIOLOGY   总被引:1,自引:0,他引:1  
Abstract:  For more than a generation, molecular biology has been used to approach palaeontological problems, and yet only recently have attempts been made to integrate research utilizing the geological and genomic records in uncovering evolutionary history. We codify this approach as Molecular Palaeobiology for which we provide a synthetic framework for studying the interplay among genotype, phenotype and the environment, within the context of deep time. We provide examples of existing studies where molecular and morphological data have been integrated to provide novel insights within each of these variables, and an account of a case study where each variable has been tackled to understand better a single macroevolutionary event: the diversification of metazoan phyla. We show that the promise of this approach extends well beyond research into the evolutionary history of animals and, in particular, we single out plant evolution as the single greatest opportunity waiting to be exploited by molecular palaeobiology. Although most of our examples consider how novel molecular data and techniques have breathed new life into long-standing palaeontological controversies, we argue that this asymmetry in the balance of molecular and morphological evidence is an artefact of the relative 'newness' of molecular data. In particular, palaeontological data provide unique and crucial roles in unravelling evolutionary history given that extinct taxa reveal patterns of character evolution invisible to molecular biology. Finally, we argue that palaeobiologists, rather than molecular biologists, are best placed to exploit the opportunity afforded by molecular palaeobiology, though this will require incorporating the techniques and approaches of molecular biology into their skill-set.  相似文献   

7.
Our understanding of human evolutionary and population history can be advanced by ecological and evolutionary studies of our parasites. Many parasites flourish only in the presence of very specific human behaviors and in specific habitats, are wholly dependent on us, and have evolved with us for thousands or millions of years. Therefore, by asking when and how we first acquired those parasites, under which environmental and cultural conditions we are the most susceptible, and how the parasites have evolved and adapted to us and we in response to them, we can gain considerable insight into our own evolutionary history. 1 , 2 As examples, the tapeworm life cycle is dependent on our consumption of meat,3 the divergence of body and head lice may have been subsequent to the development of clothing, 4 , 5 and malaria hyperendemicity may be associated with agriculture. 6 Thus, the evolutionary and population histories of these parasites are likely intertwined with critical aspects of human biology and culture. Here I review the mechanics of these and multiple other parasite proxies for human evolutionary history and discuss how they currently complement our fossil, archeological, molecular, linguistic, historical, and ethnographic records. I also highlight potential future applications of this promising model for the field of evolutionary anthropology.  相似文献   

8.
Over the past half century, the field of Evolutionary Developmental Biology, or Evo‐devo, has integrated diverse fields of biology into a more synthetic understanding of morphological diversity. This has resulted in numerous insights into how development can evolve and reciprocally influence morphological evolution, as well as generated several novel theoretical areas. Although comparative by default, there remains a great gap in our understanding of adaptive morphological diversification and how developmental mechanisms influence the shape and pattern of phenotypic variation. Herein we highlight areas of research that are in the process of filling this void, and areas, if investigated more fully, that will add new insights into the diversification of morphology. At the centre of our discussion is an explicit awareness of organismal biology. Here we discuss an organismal framework that is supported by three distinct pillars. First, there is a need for Evo‐devo to adopt a high‐resolution phylogenetic approach in the study of morphological variation and its developmental underpinnings. Secondly, we propose that to understand the dynamic nature of morphological evolution, investigators need to give more explicit attention to the processes that generate evolutionarily relevant variation at the population level. Finally, we emphasize the need to address more thoroughly the processes that structure variation at micro‐ and macroevolutionary scales including modularity, morphological integration, constraint, and plasticity. We illustrate the power of these three pillars using numerous examples from both invertebrates and vertebrates to emphasize that many of these approaches are already present within the field, but have yet to be formally integrated into many research programs. We feel that the most exciting new insights will come where the traditional experimental approaches to Evo‐devo are integrated more thoroughly with the principles of this organismal framework.  相似文献   

9.
In the first part of this paper we show how inverse problems for differential equations can be solved using the so-called collage method. Inverse problems can be solved by minimizing the collage distance in an appropriate metric space. We then provide several numerical examples in mathematical biology. We consider applications of this approach to the following areas: population dynamics, mRNA and protein concentration, bacteria and amoeba cells interaction, tumor growth.  相似文献   

10.
A common way to think about scientific practice involves classifying it as hypothesis- or data-driven. We argue that although such distinctions might illuminate scientific practice very generally, they are not sufficient to understand the day-to-day dynamics of scientific activity and the development of programmes of research. One aspect of everyday scientific practice that is beginning to gain more attention is integration. This paper outlines what is meant by this term and how it has been discussed from scientific and philosophical points of view. We focus on methodological, data and explanatory integration, and show how they are connected. Then, using some examples from molecular systems biology, we will show how integration works in a range of inquiries to generate surprising insights and even new fields of research. From these examples we try to gain a broader perspective on integration in relation to the contexts of inquiry in which it is implemented. In today's environment of data-intensive large-scale science, integration has become both a practical and normative requirement with corresponding implications for meta-methodological accounts of scientific practice. We conclude with a discussion of why an understanding of integration and its dynamics is useful for philosophy of science and scientific practice in general.  相似文献   

11.
Ecological niche models (ENMs) are commonly used to calculate habitat suitability from species’ occurrence and macroecological data. In invasive species biology, ENMs can be applied to anticipate whether invasive species are likely to establish in an area, to identify critical routes and arrival points, to build risk maps and to predict the extent of potential spread following an introduction. Most studies using ENMs focus on terrestrial organisms and applications in the marine realm are still relatively rare. Here, we review some common methods to build ENMs and their application in seaweed invasion biology. We summarize methods and concepts involved in the development of niche models, show examples of how they have been applied in studies on algae and discuss the application of ENMs in invasive algae research and to predict effects of climate change on seaweed distributions.  相似文献   

12.
The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels and chemicals, and it is also provides a platform for the production of many heterologous proteins of medical or industrial interest. Therefore, many studies have focused on metabolic engineering S. cerevisiae to improve the recombinant protein production, and with the development of systems biology, it is interesting to see how this approach can be applied both to gain further insight into protein production and secretion and to further engineer the cell for improved production of valuable proteins. In this review, the protein post-translational modification such as folding, trafficking, and secretion, steps that are traditionally studied in isolation will here be described in the context of the whole system of protein secretion. Furthermore, examples of engineering secretion pathways, high-throughput screening and systems biology applications of studying protein production and secretion are also given to show how the protein production can be improved by different approaches. The objective of the review is to describe individual biological processes in the context of the larger, complex protein synthesis network.  相似文献   

13.
Constant progress in genetic engineering has given rise to a number of promising areas of research that facilitated the expansion of industrial biotechnology. The field of metabolic engineering, which utilizes genetic tools to manipulate microbial metabolism to enhance the production of compounds of interest, has had a particularly strong impact by providing new platforms for chemical production. Recent developments in synthetic biology promise to expand the metabolic engineering toolbox further by creating novel biological components for pathway design. The present review addresses some of the recent advances in synthetic biology and how these have the potential to affect metabolic engineering in the yeast Saccharomyces cerevisiae. While S. cerevisiae for years has been a robust industrial organism and the target of multiple metabolic engineering trials, its potential for synthetic biology has remained relatively unexplored and further research in this field could strongly contribute to industrial biotechnology. This review also addresses are general considerations for pathway design, ranging from individual components to regulatory systems, overall pathway considerations and whole-organism engineering, with an emphasis on potential contributions of synthetic biology to these areas. Some examples of applications for yeast synthetic biology and metabolic engineering are also discussed.  相似文献   

14.

Background

Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant–pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions. We believe that the continuing vigour of a synthetic and interdisciplinary field like pollination biology depends on renewed connections between ecological and evolutionary approaches.

Scope

In this Viewpoint paper we highlight the application of ecological and evolutionary approaches to two themes in pollination biology: (1) links between pollinator behaviour and plant mating systems, and (2) generalization and specialization in pollination systems. We also describe how mathematical models and synthetic analyses have broadened our understanding of pollination biology, especially in human-modified landscapes. We conclude with several suggestions that we hope will stimulate future research. This Viewpoint also serves as the introduction to this Special Issue on the Ecology and Evolution of Plant–Pollinator Interactions. These papers provide inspiring examples of the synergy between evolutionary and ecological approaches, and offer glimpses of great accomplishments yet to come.Key words: Floral traits, generalization and specialization, global change, male fitness, mating systems, multiple paternity, plant–pollinator networks, pollen and gene dispersal, pollinator behaviour, pollination syndromes, pollination webs, self-fertilization  相似文献   

15.
Estimating rates of speciation and extinction, and understanding how and why they vary over evolutionary time, geographical space and species groups, is a key to understanding how ecological and evolutionary processes generate biological diversity. Such inferences will increasingly benefit from phylogenetic approaches given the ever‐accelerating rates of genetic sequencing. In the last few years, models designed to understand diversification from phylogenetic data have advanced significantly. Here, I review these approaches and what they have revealed about diversification in the natural world. I focus on key distinctions between different models, and I clarify the conclusions that can be drawn from each model. I identify promising areas for future research. A major challenge ahead is to develop models that more explicitly take into account ecology, in particular the interaction of species with each other and with their environment. This will not only improve our understanding of diversification; it will also present a new perspective to the use of phylogenies in community ecology, the science of interaction networks and conservation biology, and might shift the current focus in ecology on equilibrium biodiversity theories to non‐equilibrium theories recognising the crucial role of history.  相似文献   

16.
膜蛋白在诸多生物过程,如呼吸作用、光合作用、信号识别和分子转运等方面发挥着重要作用,近年来,去污剂的快速发展,在一定程度上极大地推动了膜蛋白研究的进展。去污剂广泛应用于膜蛋白的提取、增溶、纯化、理化性质及结构研究,然而如何选择合适的去污剂往往是一项复杂的任务。本文从以下两个方面入手系统地描述了去污剂的重要理化性质及其在膜蛋白结构功能研究中的应用,(1)去污剂结构及其对去污剂性质和水溶性的影响,去污剂形成胶束的条件及影响去污剂胶束形成的其他因素。希望这些关于去污剂的基本性质和参数的介绍,可以为相关科研工作者选用去污剂提供一个理论依据。(2)去污剂抽提膜蛋白的流程和注意细节,去污剂对膜蛋白纯化时分子量测定的影响,膜蛋白研究中去污剂的置换与去除,膜蛋白结构、功能研究案例归纳。希望这些应用细节、课题研究,可以为相关科研工作者研究膜蛋白结构功能时提供一个经验借鉴。  相似文献   

17.
Embryonic stem (ES) cells are a useful experimental material to recapitulate the differentiation steps of early embryos, which are usually invisible and inaccessible from outside of the body, especially in mammals. ES cells have greatly facilitated the analyses of gene expression profiles and cell characteristics. In addition, understanding the mechanisms during neural differentiation is important for clinical purposes, such as developing new therapeutic methods or regenerative medicine. As neurons have very limited regenerative ability, neurodegenerative diseases are usually intractable, and patients suffer from the disease throughout their lifetimes. The functional cells generated from ES cells in vitro could replace degenerative areas by transplantation. In this review, we will first demonstrate the historical views and widely accepted concepts regarding the molecular mechanisms of neural induction and positional information to produce the specific types of neurons in model animals. Next, we will describe how these concepts have recently been applied to the research in the establishment of the methodology of neural differentiation from mammalian ES cells. Finally, we will focus on examples of the applications of differentiation systems to clinical purposes. Overall, the discussion will focus on how historical developmental studies are applied to state‐of‐the‐art stem cell research.  相似文献   

18.
Coagulation disorders have been traditionally worked up by their clinical phenotypes and coagulation factor assays which are dependent on APTT- and PT-based techniques. Development of chromogenic substrates in the late seventies and early eighties allowed coagulation factors to be measured like enzymes. There was still a major lacuna in the understanding of the biology of different coagulation disorders. Modern molecular biology - which developed as an unique synthesis of biochemistry, immunology, cell biology, and genetics - allowed us to have a more comprehensive understanding of the pathobiology of many of these coagulation disorders. This overview presents several examples which show how we have enriched our understanding about the varied clinical phenotypes of different coagulation disorders.  相似文献   

19.
膜蛋白在诸多生物过程,如呼吸作用、光合作用、信号识别和分子转运等方面发挥着重要作用,近年来,去污剂的快速发展,在一定程度上极大地推动了膜蛋白研究的进展。去污剂广泛应用于膜蛋白的提取、增溶、纯化、理化性质及结构研究,然而如何选择合适的去污剂往往是一项复杂的任务。本文从以下两个方面入手系统地描述了去污剂的重要理化性质及其在膜蛋白结构功能研究中的应用,(1)去污剂结构及其对去污剂性质和水溶性的影响,去污剂形成胶束的条件及影响去污剂胶束形成的其他因素。希望这些关于去污剂的基本性质和参数的介绍,可以为相关科研工作者选用去污剂提供一个理论依据。(2)去污剂抽提膜蛋白的流程和注意细节,去污剂对膜蛋白纯化时分子量测定的影响,膜蛋白研究中去污剂的置换与去除,膜蛋白结构、功能研究案例归纳。希望这些应用细节、课题研究,可以为相关科研工作者研究膜蛋白结构功能时提供一个经验借鉴。  相似文献   

20.
Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in the discipline. We present a first attempt to correct this absence by introducing a computational biology element to teach genetic evolution into advanced biology classes in two local high schools. Our primary goal was to show students how computation is used in biology and why a basic understanding of computation is necessary for research in many fields of biology. This curriculum is intended to be taught by a computational biologist who has worked with a high school advanced biology teacher to adapt the unit for his/her classroom, but a motivated high school teacher comfortable with mathematics and computing may be able to teach this alone. In this paper, we present our curriculum, which takes into consideration the constraints of the required curriculum, and discuss our experiences teaching it. We describe the successes and challenges we encountered while bringing this unit to high school students, discuss how we addressed these challenges, and make suggestions for future versions of this curriculum.We believe that our curriculum can be a valuable seed for further development of computational activities aimed at high school biology students. Further, our experiences may be of value to others teaching computational biology at this level. Our curriculum can be obtained at http://ecsite.cs.colorado.edu/?page_id=149#biology or by contacting the authors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号