首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of tools which ensure the desired level of transgene expression in plastids is a prerequisite for the effective utilization of these plant organelles for the deployment of bioactive proteins. High-level accumulation of target proteins is considered as a positive feature of transplastomic plants, but excessive accumulation of foreign proteins may have deleterious effects on host plants. On the other hand, expression at low levels can result in ineffective phenotypes. We compared the effectiveness of different 5′-regulatory sequences in driving the expression of a reporter gene, β-glucuronidase (uidA), in tobacco chloroplasts. To achieve varying expression levels, we have chosen heterologous 5′-regulatory sequences which either differ significantly from their homologous counterparts or depend on specific nuclear encoded factors. The Medicago truncatula psbA promoter/5′-UTR supported the highest levels of protein accumulation, surpassing the other tested sequences by two to three orders of magnitude. The heterologous regulatory sequence of Phaseolus vulgaris rbcL gene was as efficient in tobacco chloroplasts as the corresponding homologous promoter/5′-UTR. The Arabidopsis thaliana ndhF promoter/5′-UTR supported as high reporter activity levels as the rbcL 5′-sequences, whereas the effectiveness of A. thaliana psbN promoter/5′-UTR was three fold lower. The characterized regulatory sequences can be utilized to establish transplastomic lines with desirable levels of target protein accumulation. The ability to control transgene expression should be useful for achieving appropriate levels of protein accumulation and thereby avoid their negative impacts on host plant physiology.  相似文献   

2.
A guanosine 5-triphosphate (GTP)-dependent protein kinase was detected in preparations of outer chloroplast envelope membranes of pea (Pisum sativum L.) chloroplasts. The protein-kinase activity was capable of phosphorylating several envelope-membrane proteins. The major phosphorylated products were 23- and 32.5-kilo-dalton proteins of the outer envelope membrane. Several other envelope proteins were labeled to a lesser extent. Following acid hydrolysis of the labeled proteins, most of the label was detected as phosphoserine with only minor amounts detected as phosphothreonine. Several criteria were used to distinguish the GTP-dependent protein kinase from an ATP-dependent kinase also present in the outer envelope membrane. The ATP-dependent kinase phosphorylated a very different set of envelope-membrane proteins. Heparin inhibited the GTP-dependent kinase but had little effect upon the ATP-dependent enzyme. The GTP-dependent enzyme accepted phosvitin as an external protein substrate whereas the ATP-dependent enzyme did not. The outer membrane of the chloroplast envelope also contained a phosphotransferase capable of transferring labeled phosphate from [-32P]GTP to ADP to yield (-32P]ATP. Consequently, addition of ADP to a GTP-dependent protein-kinase assay resulted in a switch in the pattern of labeled products from that seen with GTP to that typically seen with ATP.Abbreviations GDP (GMP, GTP) guanosine 5-diphosphate (mono-, tri-); kDa-kilodalton - S0.5 concentration of substrate supporting half-maximal velocity - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - Tricine N-(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)glycine  相似文献   

3.
A comparison of changes in absorption properties and electron transport activities of chloroplasts ageing in vivo and in vitro is made. Chloroplasts from sunflower leaves senescing in vivo during 7 days in dark do not show a blue shift of the red absorption band; in contrast, the shift becomes apparent within 24 h of in vitro ageing of isolated organelles. Photosynthetic activity by chloroplasts is lost much faster during in vitro than in vivo ageing. During in vitro ageing, the rate of degradation of thylakoid membranes as characterised by the shift in the red absorption band and loss in Hill reaction is further accelerated in chloroplasts isolated from dark-induced senescing leaves, suggesting the influence of the in vivo status of the chloroplasts on their in vitro stability.Abbreviations DCPIP 2,6-dichlorophenol indophenol - PSI Photosystem I - Chl Chlorophyll  相似文献   

4.
Addition of ATP to chloroplasts causes a reversible 25–30% decrease in chlorophyll fluorescence. This quenching is light-dependent, uncoupler insensitive but inhibited by DCMU and electron acceptors and has a half-time of 3 minutes. Electron donors to Photosystem I can not overcome the inhibitory effect of DCMU, suggesting that light activation depends on the reduced state of plastoquinone. Fluorescence emission spectra recorded at ?196°C indicate that ATP treatment increases the amount of excitation energy transferred to Photosystem I. Examination of fluorescence induction curves indicate that ATP treatment decreases both the initial (Fo) and variable (Fv) fluorescence such that the ratio of Fv to the maximum (Fm) yield is unchanged. The initial sigmoidal phase of induction is slowed down by ATP treatment and is quenched 3-fold more than the exponential slow phase, the rate of which is unchanged. A plot of Fv against area above the induction curve was identical plus or minus ATP. Thus ATP treatment can alter quantal distribution between Photosystems II and I without altering Photosystem II-Photosystem II interaction. The effect of ATP strongly resembles in its properties the phosphorylation of the light-harvesting complex by a light activated, ATP-dependent protein kinase found in chloroplast membranes and could be the basis of physiological mechanisms which contribute to slow fluorescence quenching in vivo and regulate excitation energy distribution between Photosystem I and II. It is suggested that the sensor for this regulation is the redox state of plastoquinone.  相似文献   

5.
A comparison of changes in absorption properties and electron transport activities of chloroplasts ageing in vivo and in vitro is made. Chloroplasts from sunflower leaves senescing in vivo during 7 days in dark do not show a blue shift of the red absorption band; in contrast, the shift becomes apparent within 24 h of in vitro ageing of isolated organelles. Photosynthetic activity by chloroplasts is lost much faster during in vitro than in vivo ageing. During in vitro ageing, the rate of degradation of thylakoid membranes as characterised by the shift in the red absorption band and loss in Hill reaction is further accelerated in chloroplasts isolated from dark-induced senescing leaves, suggesting the influence of the in vivo status of the chloroplasts on their in vitro stability.Abbreviations DCPIP 2,6-dichlorophenol indophenol - PSI Photosystem I - Chl+ Chlorophyll  相似文献   

6.
The Rieske Fe/S protein, a nuclear-encoded subunit of the cytochrome b(6)/f complex in chloroplasts, is retarded in the stromal space after import into the chloroplast and only slowly translocated further into the thylakoid membrane system. As shown by the sensitivity to nigericin and to specific competitor proteins, thylakoid transport takes place by the DeltapH-dependent TAT pathway. The Rieske protein is an untypical TAT substrate, however. It is only the second integral membrane protein shown to utilize this pathway, and it is the first authentic substrate without a cleavable signal peptide. Transport is instead mediated by the NH(2)-terminal membrane anchor, which lacks, however, the twin-arginine motif indicative of DeltapH/TAT-dependent transport signals. Furthermore, transport is affected by sodium azide as well as by competitor proteins for the Sec pathway in chloroplasts, demonstrating for the first time some cross-talk of the two pathways. This might take place in the stroma where the Rieske protein accumulates after import in several complexes of high molecular mass, among which the cpn60 complex is the most prominent. These untypical features suggest that the Rieske protein represents an intermediate or early state in the evolution of the thylakoidal protein transport pathways.  相似文献   

7.
8.
RNA maturation and modulation of RNA stability play important roles in chloroplast gene expression. In vitro and in vivo studies have shown that both the 5- and 3-untranslated regions (UTRs) contain sequence and structural elements that guide these processes, and interact with specific proteins. We have previously characterized the spinach chloroplast petD 3-UTR in detail by in vitro approaches. This stem-loop forming sequence is a weak terminator but is required for RNA maturation and also exhibits sequence-specific protein binding. To test petD 3-UTR function in vivo, tobacco chloroplast transformants were generated containing uidA reporter genes flanked by variants of the petD 3-UTR, including one which does not form an RNA-protein complex in vitro, and one which lacks a stem-loop structure. Analysis of uidA mRNA indicated that a stable secondary structure is required to accumulate a discrete mRNA, and that changes in the 3-UTR sequence which affect protein binding in vitro can also affect RNA metabolism in vivo. The 3-UTR also influenced -glucuronidase protein accumulation, but not in proportion to RNA levels. These results raise the possibility that in tobacco chloroplasts, the 3-UTR may influence translational yield.  相似文献   

9.
10.
Distribution of 5′-nucleotidase in the renal interstitium of the rat   总被引:2,自引:0,他引:2  
Summary The hydrolysis of 5-AMP by 5-nucleotidase is the main source of adenosine. In various tissues adenosine is a local mediator adjusting the organ work to the available energy. In the kidney it regulates renal hemodynamics, glomerular filtration rate and renin release via specific receptors of the arteriolar walls. By immunocytochemistry we identified interstitial and tubular sites of 5-nucleotidase in the rat kidney. In the interstitium the enzyme was detected only in the cortical labyrinth, the compartment that comprises all arteriolar vessels besides other putative targets of adenosine. The 5-nucleotidase-positive cells of the interstitium were identified as fibroblasts. The fibroblasts are in close contact with the tubules as well as with the vessels. Thus, any 5-AMP released by the tubules into the interstitial space would be converted to adenosine in the direct vicinity of its assumed targets. Adenosine produced by tubular cells would hardly have access to its known targets, since 5-nucleotidase is restricted to the luminal cell surface. Pathological events affecting the fibroblasts might influence renal function by modifying the interstitial adenosine production.  相似文献   

11.
Flash-induced, fast (t 1/2 1 ms), reversible reduction of the high potential cytochrome b-559 (cyt b-559HP) was observed in chloroplasts in the presence of 2 M protonophore, FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone), CCCP (carbonylcyanide 3-chlorophenylhydrazone) or SF 6847 (2,6-di-(t-butyl)-4-(2,2-dicyanovinyl)phenol). These protonophores promote autooxidation of cyt b-559HP in the dark (Arnon and Tang 1988, Proc Natl Acad Sci USA 85: 9524). No fast photoreduction could, however, be observed if the molecules were oxidized with ferricyanide in the absence of protonophores. This suggests that the molecules must be deprotonated to be capable for fast photoreduction.Photoreduction of cyt b-559HP was largely insensitive to DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone), but was inhibited by DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea). With a train of flashes, no oscillation could be observed in the amplitudes of photoreduction. These data strongly suggest that cyt b-559HP is reduced by the semireduced secondary quinone acceptor (QB ) of Photosystem 2.Abbreviations ADRY- acceleration of the deactivation reactions of the water-splitting enzyme system Y of photosynthesis - Ant 2p- 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene - cyt- cyto-chrome - CCCP- carbonylcyanide 3-chlorophenylhydrazone - DBMIB- 2,5-dibromo-3-methyl-6-iso-propyl-p-benzoquinone - DCMU- 3-(3,4-dichlorophenyl)-1,1-dimehtylurea - FCCP- carbonylcyanide p-trifluoromethoxyphenylhydrazone - FeCy- ferricyanide - HP- high potential form - HQ- hydroquinone - PQ- plastoquinone - PS 2- Photosystem 2 - SF 6847- 2,6-di-(t-butyl)-4-(2,2-dicyanovinyl)-phenol  相似文献   

12.
G.F.W. Searle  J.S.C. Wessels 《BBA》1978,504(1):84-99
Spinach chloroplasts have been prepared nonaqueously using non-polar solvents (n-hexane, CCl4, n-heptane) and the β-carotene content extracted in a controlled manner. This procedure is reproducible and does not result in large structural or spectral changes of the chloroplasts. The organisation of the chlorophyll-proteins is unaltered, as fragmentation with digitonin results in the appearance of the same fractions as found previously for aqueously-prepared chloroplasts, including the pink zone containing cytochromes f and b6 in the ratio 1:2. The chloroplasts possess both Photosystem I activity (P-700 photo-bleaching, and NADP+ photoreduction) and Photosystem II activity (parabenzoquinone reduction with Mn2+ as electron donor, and chlorophyll fluorescence induction). Use of moderate intensity red illumination has allowed a study of the role of β-carotene in photochemistry separate from its roles in energy transfer and photoprotection.Removal of the fraction of β-carotene closely associated with the Photo-system I reaction centre caused the rate of NADP+ photoreduction to fall to a low, but significantly non-zero level. Thus, in the complete absence of β-carotene, photochemistry can still be observed, however the specific association of β-carotene with the reaction centre is required for maximal rates. We propose that β-carotene bound at the reaction centre decreases the rate of transfer of excitation energy away from the reaction centre, and increases the rate of photochemistry. It is possible that this occurs via formation of an exciplex between ground state β-carotene and chlorophyll in the first excited state.  相似文献   

13.
Summary To date, it is still unknown whether the metabolism of purine nucleotides and nucleosides plays an important role in the pineal organ of lower vertebrates. We have therefore investigated the sites of 5-nucleotidase activity in the pineal organ of the pike (Esox lucius L.). Various ultracytochemical procedures were used. An intense ecto-5-nucleotidase activity was characteristic of the entire plasma membrane of the phototransducers (cone-like and modified photoreceptor elements) and the interstitial cells, with exception of the portions facing the basal lamina of the pericapillary spaces. Additionally, intracellular sites of activity were also visualized in the inner segment and the pedicle of the phototransducers. Most of the intracellular deposits were apparently cytosolic and only few seemed to be associated with the membrane of the clear synaptic vesicles of the pedicle. Phagocytotic cells in the pineal lumen also showed a strong enzymatic activity on the outer surface of their plasmalemma (in ectoposition). This was apparently not the case for the cell types of the tissues surrounding the pineal vesicle. The present study emphasizes the importance of the occurrence and metabolism of purine nucleotides and nucleosides in a photoreceptive pineal organ.  相似文献   

14.
A carotenoid requirement for photosystem I activity in spinach chloroplasts using extraction-reconstitution technique has been investigated. The transfer of electron from N,N,N,N-tetramethyl-p-phenylene diamine through the chloroplast photosystem to methyl viologen dye or to NADP+ was used as an assay of photosystem I activity. Extraction of lyophilized spinach chloroplasts with heptane at near 0°C removed almost all -carotene and reduced photochemical activities associated with photosystem I to a low level (about 15% of the original activity). Reconstitution of the extracted chloroplasts with -carotene completely restored photosystem I activity. The maximum rate of methyl viologen photoreduction in reconstituted chloroplasts occurred at an -carotene/chlorophyll molar ratio of 0.5. Cyclic phosphorylation mediated by phenazine methosulphate was partially restored. Xanthophylls (lutein, neoxanthin, violaxanthin), as components of chloroplast membranes, were not able to replace -carotene in reconstitution of chloroplasts and had essentially no effect on restoring photoreactions. On the basis of the P700/total chlorophyll ratio it can be assumed that extraction of lyophilized chloroplasts with heptane do not affect photosystem I reaction centre. Therefore it is possible that -carotene, removed during heptane extraction and belonging mainly to the antenna pigment pool of photosystem I, is effective in the restoration of photosystem I activity.Abbreviations chl chlorophyll - DCIP 2,6-dichlorophenolindophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - EPR electron paramagnetic resonance - MV methyl viologen - PMS phenazine methosulphate - PQA plastoquinone A - PS I photosystem I - PS II photosystem II - TMPD N,N,N',N'-tetramethyl-p-phenylene diamine - Tricine N-tris(hydroxymethyl)methyglycine. D-1, D-10, D-50, D-144 represent chloroplast subfractions sedimented at 1000 × g, 10,000 g, 50,000 × g and 144,000 × g - s supernatant This paper is a partial fulfillment of the requirements for the Ph.D. degree of A.T. at Maria Curie-Skodowska University, Lublin.  相似文献   

15.
Intact, isolated spinach chloroplasts incorporated 14C from 14CO2 into plastoquinone and β-carotene under photosynthetic conditions. Addition of unlabelled l-tyrosine, p-hydroxyphenylpyruvate, or homogentisate increased the incorporation of 14C into plastoquinone, but decreased that into β-carotene.  相似文献   

16.
Abstract

The deuterations of 2′-deoxyguanosine in the 4′ and 5′ positions have been described elsewhere (1). The starting material is the 5′-aldehyde formed by mild oxidation with N,N-dicyclohexyl carbodiimide in dimethyl sulphoxide of the fully protected nucleoside with free 5′-alcoholic function. The 5′4euteration was achieved by reduction with deuterated sodium borohydride. Incorporation of deuterium in the 4′-position was achieved v i a an enhanced keto-enol tautomerim by heating the aldehyde in 50/50 D20/pyridine, with subsequent reduction of the aldehyde with NaBH4. The 6-furanoid form was isolated from the I-lyxo by-product by reverse phase HPLC. Applied to pyrimidine 2′-deoxyribonucleosides, this method was shown to give deuterated 2′-deoxycytidine and thymidine in good yield.  相似文献   

17.
Summary An allele giving rise to a polymorphism within the 3 part of the chicken vitellogenin gene was cloned, sequenced, and compared to the previously cloned allele. The polymorphism is formed by a perfect copy of 343 bp from intron 32 in tandem array with a perfect copy of 244 bp from intron 33; this 587-bp element is inserted in a head-to-tail arrangement in intron 33. We propose a mechanism in which an unequal crossing-over resulted in a vitellogenin gene with two exons 33, one of which was subsequently deleted. Thus, intron 33 was enlarged by the tandem repeats without affecting the protein-encoding sequence of the gene. At the boundaries of the repeated elements, two short direct repeats are found that resemble the recombination signals of immunoglobulin genes. They may have had a key role in the formation of the new allele.  相似文献   

18.
E.F. Elstner  A. Heupel 《BBA》1973,325(1):182-188
The mechanism of the decarboxylation of α-keto acids by isolated chloroplasts has been studied with the aid of superoxide dismutase and catalase. Using photosynthetic and enzymatic systems, which are known to catalyze peroxidic oxidations, we have been able to demonstrate that both the superoxide free radical ion and H2O2 are necessary for maximal rates of decarboxylation. In isolated chloroplasts, an auto-oxidizable electron acceptor as well as an electron donor for Photosystem I are absolute requirements for the decarboxylation. H2O2 seems to be the primary oxidant in the decarboxylation of pyruvate or glyoxylate by isolated chloroplasts. A secondary rate of decarboxylation is superimposed on the primary one, mediated by superoxide free radical ion. Mn2+ stimulates the decarboxylation probably via intermediarily-formed Mn3+ in a reaction, which is neither inhibited by catalase nor by superoxide dismutase. A decarboxylation of pyruvate or glyoxylate by isolated chloroplasts in the presence of NADP+ is initiated, as soon as the available NADP+ is fully reduced. In this case, the open-chain electron transport seems to switch from NADP+ to oxygen as the terminal electron acceptor.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号