首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pantothenate (vitamin B(5)) is the precursor of the 4'-phosphopantetheine moiety of coenzyme A and acyl-carrier protein. It is made by plants and microorganisms de novo, but is a dietary requirement for animals. The pantothenate biosynthetic pathway is well-established in bacteria, comprising four enzymic reactions catalysed by ketopantoate hydroxymethyltransferase (KPHMT), L: -aspartate-alpha-decarboxylase (ADC), pantothenate synthetase (PS) and ketopantoate reductase (KPR) encoded by panB, panD, panC and panE genes, respectively. In higher plants, the genes encoding the first (KPHMT) and last (PS) enzymes have been identified and characterised in several plant species. Commercially, pantothenate is chemically synthesised and used in vitamin supplements, feed additives and cosmetics. Biotransformation is an attractive alternative production system that would circumvent the expensive procedures of separating racemic intermediates. We explored the possibility of manipulating pantothenate biosynthesis in plants. Transgenic oilseed rape (Brassica napus) lines were generated in which the E. coli KPHMT and PS genes were expressed under a strong constitutive CaMV35SS promoter. No significant change of pantothenate levels in PS transgenic lines was observed. In contrast plants expressing KPHMT had elevated pantothenate levels in leaves, flowers siliques and seed in the range of 1.5-2.5 fold increase compared to the wild type plant. Seeds contained the highest vitamin content, indicating that they might be the ideal target for production purposes.  相似文献   

2.
Sirtuins in mammals: insights into their biological function   总被引:3,自引:0,他引:3  
Vitamin B6 is well known in its biochemically active form as pyridoxal 5'-phosphate, an essential cofactor of numerous metabolic enzymes. The vitamin is also implicated in numerous human body functions ranging from modulation of hormone function to its recent discovery as a potent antioxidant. Its de novo biosynthesis occurs only in bacteria, fungi and plants, making it an essential nutrient in the human diet. Despite its paramount importance, its biosynthesis was predominantly investigated in Escherichia coli, where it is synthesized from the condensation of deoxyxylulose 5-phosphate and 4-phosphohydroxy-L-threonine catalysed by the concerted action of PdxA and PdxJ. However, it has now become clear that the majority of organisms capable of producing this vitamin do so via a different route, involving precursors from glycolysis and the pentose phosphate pathway. This alternative pathway is characterized by the presence of two genes, Pdx1 and Pdx2. Their discovery has sparked renewed interest in vitamin B6, and numerous studies have been conducted over the last few years to characterize the new biosynthesis pathway. Indeed, enormous progress has been made in defining the nature of the enzymes involved in both pathways, and important insights have been provided into their mechanisms of action. In the present review, we summarize the recent advances in our knowledge of the biosynthesis of this versatile molecule and compare the two independent routes to the biosynthesis of vitamin B6. Surprisingly, this comparison reveals that the key biosynthetic enzymes of both pathways are, in fact, very similar both structurally and mechanistically.  相似文献   

3.
Vitamin B6 (pyridoxal phosphate) is an essential cofactor in enzymatic reactions involved in numerous cellular processes and also plays a role in oxidative stress responses. In plants, the pathway for de novo synthesis of pyridoxal phosphate has been well characterized, however only two enzymes, pyridoxal (pyridoxine, pyridoxamine) kinase (SOS4) and pyridoxamine (pyridoxine) 5' phosphate oxidase (PDX3), have been identified in the salvage pathway that interconverts between the six vitamin B6 vitamers. A putative pyridoxal reductase (PLR1) was identified in Arabidopsis based on sequence homology with the protein in yeast. Cloning and expression of the AtPLR1 coding region in a yeast mutant deficient for pyridoxal reductase confirmed that the enzyme catalyzes the NADPH-mediated reduction of pyridoxal to pyridoxine. Two Arabidopsis T-DNA insertion mutant lines with insertions in the promoter sequences of AtPLR1 were established and characterized. Quantitative RT-PCR analysis of the plr1 mutants showed little change in expression of the vitamin B6 de novo pathway genes, but significant increases in expression of the known salvage pathway genes, PDX3 and SOS4. In addition, AtPLR1 was also upregulated in pdx3 and sos4 mutants. Analysis of vitamer levels by HPLC showed that both plr1 mutants had lower levels of total vitamin B6, with significantly decreased levels of pyridoxal, pyridoxal 5'-phosphate, pyridoxamine, and pyridoxamine 5'-phosphate. By contrast, there was no consistent significant change in pyridoxine and pyridoxine 5'-phosphate levels. The plr1 mutants had normal root growth, but were significantly smaller than wild type plants. When assayed for abiotic stress resistance, plr1 mutants did not differ from wild type in their response to chilling and high light, but showed greater inhibition when grown on NaCl or mannitol, suggesting a role in osmotic stress resistance. This is the first report of a pyridoxal reductase in the vitamin B6 salvage pathway in plants.  相似文献   

4.
Vitamin B1 (thiamine) is an essential cofactor for several key enzymes of carbohydrate metabolism. Mammals have to salvage this crucial nutrient from their diet to complement their deficiency of de novo synthesis. In contrast, bacteria, fungi, plants and, as reported here, Plasmodium falciparum, possess a vitamin B1 biosynthesis pathway. The plasmodial pathway identified consists of the three vitamin B1 biosynthetic enzymes 5-(2-hydroxy-ethyl)-4-methylthiazole (THZ) kinase (ThiM), 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP)/HMP-P kinase (ThiD) and thiamine phosphate synthase (ThiE). Recombinant PfThiM and PfThiD proteins were biochemically characterised, revealing K(m)app values of 68 microM for THZ and 12 microM for HMP. Furthermore, the ability of PfThiE for generating vitamin B1 was analysed by a complementation assay with thiE-negative E. coli mutants. All three enzymes are expressed throughout the developmental blood stages, as shown by Northern blotting, which indicates the presence of the vitamin B1 biosynthesis enzymes. However, cultivation of the parasite in minimal medium showed a dependency on the provision of HMP or thiamine. These results demonstrate that the human malaria parasite P. falciparum possesses active vitamin B1 biosynthesis, which depends on external provision of thiamine precursors.  相似文献   

5.
Evolving concepts in plant glycolysis: two centuries of progress   总被引:4,自引:0,他引:4  
Glycolysis, the process responsible for the conversion of monosaccharides to pyruvic acid, is a ubiquitous feature of cellular metabolism and was the first major biochemical pathway to be well characterized. Although the majority of glycolytic enzymes are common to all organisms, the past quarter of a century has revealed that glycolysis in higher plants possesses numerous distinctive features. Research in the nineteenth century established convincingly that plants carry out alcoholic fermentation under anaerobic conditions. In 1878, Wilhelm Pfeffer asserted that a non-oxygen-requiring ‘intramolecular respiration’ was involved in the aerobic respiration of plants. Between 1900 and 1950 it was demonstrated that plants metabolize sugar and starch by a glycolytic pathway broadly similar to that of yeasts and muscle tissue. In 1948, the first purification and characterization of a plant glycolytic enzyme, aldolase, was published by Paul Stumpf. By 1960 the presence of each of the 10 enzymes of glycolysis, presumed at the time to be located in the cytosol, had been confirmed in higher plants. Shortly after 1960 it was shown that the mechanism of glycolytic regulation in plants had features in common with that of animals and yeasts, especially as regards the important role played by the enzyme phosphofructokinase; but important regulatory properties peculiar to plants were soon demonstrated. In the last 30 years, higher-plant glycolysis has been found to exhibit a number of additional characteristics peculiar to plant systems. One conspicuous feature of plant glycolysis, discovered in the 1970s, is the presence of a complete or nearly complete sequence of glycolytic enzymes in plastids, distinct and spatially separated from the glycolytic enzymes located in the cytosol. Plastidic and cytosolic isoenzymes of glycolysis have been shown to differ in their kinetic and regulatory properties, suggesting that the two pathways are independently regulated. Since about 1980 it has become increasingly clear that the cytosolic glycolysis of plants may make use of several enzymes other than the conventional ones found in yeasts, muscle tissue and plant plastids: these enzymes include a pyrophosphate-dependent phosphofructokinase, a non-reversible and nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase, a phosphoenolpyruvate phosphatase (vacuolar location) and a three-enzyme sequence able to produce pyruvate from phosphoenolpyruvate avoiding the pyruvate-kinase step. These non-conventional enzymes may catalyze glycolysis in the plant cytosol especially under conditions of metabolic stress. Experiments on transgenic plants possessing significantly elevated or reduced (reduced to virtually nil in some cases) levels of glycolytic enzymes are currently playing an important part in improving our understanding of the regulation of plant glycolysis; such experiments illustrate an impressive degree of flexibility in the pathway's operation. Plant cells are able to make use of enzymes bypassing or substituting for several of the conventional enzymic steps in the glycolytic pathway; the extent and conditions under which these bypasses operate are the subject of current research. The duplication of the glycolytic pathway in plants and the flexible nature of the pathway have possibly evolved in relation to the crucial biosynthetic role played by plant glycolysis beyond its function in energy generation; both functions must proceed if a plant is to survive under varying and often stressful environmental or nutritional conditions.  相似文献   

6.
Coumarins (1,2-benzopyrones) are ubiquitously found in higher plants where they originate from the phenylpropanoid pathway. They contribute essentially to the persistence of plants being involved in processes such as defense against phytopathogens, response to abiotic stresses, regulation of oxidative stress, and probably hormonal regulation. Despite their importance, major details of their biosynthesis are still largely unknown and many P450-dependent enzymatic steps have remained unresolved. Ortho-hydroxylation of hydroxycinnamic acids is a pivotal step that has received insufficient attention in the literature. This hypothetical P450 reaction is critical for the course for the biosynthesis of simple coumarin, umbelliferone and other hydroxylated coumarins in plants. Multiple P450 enzymes are also involved in furanocoumarin synthesis, a major class of phytoalexins derived from umbelliferone. Several of them have been characterized at the biochemical level but no monooxygenase gene of the furanocoumarin pathway has been identified yet. This review highlights the major steps of the coumarin pathway with emphasis on the cytochrome P450 enzymes involved. Recent progress and the outcomes of novel strategies developed to uncover coumarin-committed CYPs are discussed.  相似文献   

7.
Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units   总被引:11,自引:0,他引:11  
Isoprenoids are synthesized by consecutive condensations of their five-carbon precursor, isopentenyl diphosphate, to its isomer, dimethylallyl diphosphate. Two pathways for these precursors are known. One is the mevalonate pathway, which operates in eucaryotes, archaebacteria, and cytosols of higher plants. The other is a recently discovered pathway, the nonmevalonate pathway, which is used by many eubacteria, green algae, and chloroplasts of higher plants. To date, five reaction steps in this new pathway and their corresponding enzymes have been identified. EC numbers of these enzymes have been assigned by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB) and are available at http://www.chem.qmw.ac.uk/iubmb/enzyme/reaction/terp/nonMVA.html.  相似文献   

8.
As a versatile cofactor for many enzymes catalyzing important biochemical reactions, vitamin B6 is required for all cellular organisms. In contrast to bacteria, fungi and plants, which have the ability to synthesize vitamin B6 de novo , animals have to take up the vitamin from their diet. Plants are the major source of vitamin B6 for animals. The recent identification of vitamin B6 biosynthetic enzymes PDX1 and PDX2 in plants makes it possible to regulate the biosynthesis of this important vitamin. In this study, we generated Arabidopsis plants overexpressing the PDX1 and/or PDX2 gene and used a liquid chromatography/mass spectrometry/mass spectrometry method to determine the levels of different forms of vitamin B6 in these transgenic plants. It was found that expression of the PDX genes under control of the CaMV 35S promoter caused only a limited increase in pyridoxine contents in dry seeds but not in shoots or roots. When using the Arabidopsis seed-specific 12S promoter to drive the expression of the PDX genes, the levels of vitamin B6 increased more than twofold in transgenic plants. Our work demonstrates that it is feasible to enhance vitamin B6 content in seeds by metabolic engineering.  相似文献   

9.
The L-galactose (Smirnoff-Wheeler) pathway represents the major route to L-ascorbic acid (vitamin C) biosynthesis in higher plants. Arabidopsis thaliana VTC2 and its paralogue VTC5 function as GDP-L-galactose phosphorylases converting GDP-L-galactose to L-galactose-1-P, thus catalyzing the first committed step in the biosynthesis of L-ascorbate. Here we report that the L-galactose pathway of ascorbate biosynthesis described in higher plants is conserved in green algae. The Chlamydomonas reinhardtii genome encodes all the enzymes required for vitamin C biosynthesis via the L-galactose pathway. We have characterized recombinant C. reinhardtii VTC2 as an active GDP-L-galactose phosphorylase. C. reinhardtii cells exposed to oxidative stress show increased VTC2 mRNA and L-ascorbate levels. Genes encoding enzymatic components of the ascorbate-glutathione system (e.g. ascorbate peroxidase, manganese superoxide dismutase, and dehydroascorbate reductase) are also up-regulated in response to increased oxidative stress. These results indicate that C. reinhardtii VTC2, like its plant homologs, is a highly regulated enzyme in ascorbate biosynthesis in green algae and that, together with the ascorbate recycling system, the L-galactose pathway represents the major route for providing protective levels of ascorbate in oxidatively stressed algal cells.  相似文献   

10.
Pantothenate is the essential precursor of coenzyme A (CoA), a fundamental cofactor in all aspects of metabolism. In bacteria and eukaryotes, pantothenate synthetase (PS) catalyzes the last step in the pantothenate biosynthetic pathway, and pantothenate kinase (PanK) phosphorylates pantothenate for its entry into the CoA biosynthetic pathway. However, genes encoding PS and PanK have not been identified in archaeal genomes. Recently, a comparative genomic analysis and the identification and characterization of two novel archaea-specific enzymes show that archaeal pantoate kinase (PoK) and phosphopantothenate synthetase (PPS) represent counterparts to the PS/PanK pathway in bacteria and eukaryotes. The TON1374 protein from Thermococcus onnurineus NA1 is a PPS, that shares 54% sequence identity with the first reported archaeal PPS candidate, MM2281, from Methanosarcina mazei and 91% sequence identity with TK1686, the PPS from Thermococcus kodakarensis. Here, we report the apo and ATP-complex structures of TON1374 and discuss the substrate-binding mode and reaction mechanism.  相似文献   

11.
Lysine biosynthesis has been extensively studied and the regulatory enzymes characterized in some of the most important crop plants, however, much less is known about the lysine degradation pathway. Lysine 2-oxoglutarate reductase (LOR) and saccharopine dehydrogenase (SDH) have recently been partially purified and characterized from plants, and have been shown to exist as a single bifunctional polypeptide. We have further characterized these enzymes from rice endosperm in relation to Ca2+ and ionic strength modulation. Optimum pH values of 7.0 and 8.0 were obtained for LOR and SDH, respectively. The LOR domain of the polypeptide was modulated by Ca2+ and ionic strength, whereas the SDH domain was not. It would appear that the modulation by Ca2+ and ionic strength of LOR is a common feature among plant LOR enzymes. S -adenosylmethionine (SAM) did not produce any significant effect on either enzyme activity, indicating that it only plays a role in the regulation of lysine biosynthesis. The effect of S -2-aminoethyl- l -cysteine (AEC) as both a substrate and an inhibitor of LOR activity was also tested. AEC was shown to partially substitute for lysine as a substrate for LOR, but was also able to inhibit LOR activity, possibly competing with lysine at the active site. The higher Km for AEC compared to lysine may reflect a lower binding affinity for AEC.  相似文献   

12.
L-Ascorbate biosynthesis in higher plants: the role of VTC2   总被引:1,自引:0,他引:1  
In the past year, the last missing enzyme of the L-galactose pathway, the linear form of which appears to represent the major biosynthetic route to L-ascorbate (vitamin C) in higher plants, has been identified as a GDP-L-galactose phosphorylase. This enzyme catalyzes the first committed step in the synthesis of that vital antioxidant and enzyme cofactor. Here, we discuss how GDP-L-galactose phosphorylase enzymes, encoded in Arabidopsis by the paralogous VTC2 and VTC5 genes, function in concert with the other enzymes of the L-galactose pathway to provide plants with the appropriate levels of L-ascorbate. We hypothesize that regulation of L-ascorbate biosynthesis might occur at more than one step and warrants further investigation to allow for the manipulation of vitamin C levels in plants.  相似文献   

13.
维生素E(vitamin E, VE)是一类由光合生物合成的、人类饮食中必不可少的两种抗氧化物质,分为生育酚和生育三烯酚两大类。除了生育酚类物质所具有的抗氧化作用外,生育三烯酚还有很强的降胆固醇、预防糖尿病、促进骨吸收、抗癌和神经保护的作用,因此,VE被广泛应用于医药、食品、化妆品等行业中。本文主要综述了植物维生素E生物合成相关酶的研究进展以及利用基因工程手段提高植物维生素E活性的新策略。其中,多基因共转化、多基因操纵子及质体转化等方法为提高植物维生素E活性提供了新的思路。  相似文献   

14.
Rice octadecanoid pathway   总被引:8,自引:0,他引:8  
Plant jasmonic acid (JA) and structurally similar animal prostaglandins play pivotal roles in regulating cellular responses against environmental cues, including the innate immune response(s). In plants, JA and its immediate precursor 12-oxo-phytodienoic acid (OPDA) are synthesized by the octadecanoid pathway, which employs at least five enzymes (lipase, lipoxygenase, allene oxide synthase and cyclase, and OPDA reductase), in addition to the enzymes involved in the beta-oxidation steps. Genetic, molecular, and biochemical analyses have led to the identification of almost all the genes of the octadecanoid pathway in Arabidopsis--a model dicotyledonous plant. In this regard, rice (Oryza sativa L.)--an important socio-economic monocotyledonous model research plant--remains poorly characterized. Until now, no gene has been specifically associated with this pathway. It is therefore of utmost importance to identify, characterize, and assign the pathway specific genes in rice. In this review, we have surveyed the rice genome, extracted a large number of putative genes of the octadecanoid pathway, and discussed their relationship with the known pathway genes from other plant species. Moreover, the achievements made so far on the rice octadecanoid pathway have also been summarized to reflect the contribution of rice towards extending our knowledge on this critical pathway in plants.  相似文献   

15.
The biosynthesis of CoA from pantothenic acid (vitamin B5) is an essential universal pathway in prokaryotes and eukaryotes. The CoA biosynthetic genes in bacteria have all recently been identified, but their counterparts in humans and other eukaryotes remained mostly unknown. Using comparative genomics, we have identified human genes encoding the last four enzymatic steps in CoA biosynthesis: phosphopantothenoylcysteine synthetase (EC ), phosphopantothenoylcysteine decarboxylase (EC ), phosphopantetheine adenylyltransferase (EC ), and dephospho-CoA kinase (EC ). Biological functions of these human genes were verified using a complementation system in Escherichia coli based on transposon mutagenesis. The individual human enzymes were overexpressed in E. coli and purified, and the corresponding activities were experimentally verified. In addition, the entire pathway from phosphopantothenate to CoA was successfully reconstituted in vitro using a mixture of purified recombinant enzymes. Human recombinant bifunctional phosphopantetheine adenylyltransferase/dephospho-CoA kinase was kinetically characterized. This enzyme was previously suggested as a point of CoA biosynthesis regulation, and we have observed significant differences in mRNA levels of the corresponding human gene in normal and tumor cells by Northern blot analysis.  相似文献   

16.
The multibranched shikimic acid pathway was discovered as the biosynthetic route to the aromatic amino acids phenylalanine, tyrosine and tryptophan and a host of other secondary metabolites. An extensive body of work is available on the characterization of various enzymes of this pathway in order to understand the underlying mechanisms of aromatic amino acid biosynthesis and secondary metabolism in higher plants. In the present investigation, selective assays, based on feedback regulation patterns and divalent cation requirements, were used to monitor the isozyme profiles of two of the key regulatory enzymes of this pathway. 3-Deoxy- d -arabino heptulosonate-7-phosphate synthase (DAHP synthase/DS) (EC 4.1.2.15) and chorismate mutase (CM) (EC 5.4.99.4) have been characterized from different vegetative and reproductive organs of Brassica juncea cv. Pusa Bold. An attempt has also been made to investigate the effect of external factors, such as light and wounding on the regulation of these enzymes. The results reveal differential expression of DAHP synthase and CM in various organs of Brassica and an adaptability of plants to various stresses by up or down regulation of these enzymes.  相似文献   

17.
Tocopherols are lipid-soluble compounds synthesized only by photosynthetic eukaryotes and oxygenic cyanobacteria. The pathway and enzymes for tocopherol synthesis are homologous in cyanobacteria and plants except for 2-methyl-6-phytyl-1,4-benzoquinone/2-methyl-6-solanyl-1,4-benzoquinone methyltransferase (MPBQ/MSBQ MT), which catalyzes a key methylation step in both tocopherol and plastoquinone (PQ) synthesis. Using a combined genomic, genetic, and biochemical approach, we isolated and characterized the VTE3 (vitamin E defective) locus, which encodes MPBQ/MSBQ MT in Arabidopsis. The phenotypes of vte3 mutants are consistent with the disruption of MPBQ/MSBQ MT activity to varying extents. The ethyl methanesulfonate-derived vte3-1 allele alters tocopherol composition but has little impact on PQ levels, whereas the null vte3-2 allele is deficient in PQ and alpha- and gamma-tocopherols. In vitro enzyme assays confirmed that VTE3 is the plant functional equivalent of the previously characterized MPBQ/MSBQ MT (Sll0418) from Synechocystis sp PCC6803, although the two proteins are highly divergent in primary sequence. Sll0418 orthologs are present in all fully sequenced cyanobacterial genomes, Chlamydomonas reinhardtii, and the diatom Thalassiosira pseudonana but absent from vascular and nonvascular plant databases. VTE3 orthologs are present in all vascular and nonvascular plant databases and in C. reinhardtii but absent from cyanobacterial genomes. Intriguingly, the only prokaryotic genomes that contain VTE3-like sequences are those of two species of archea, suggesting that, in contrast to all other enzymes of the plant tocopherol pathway, the evolutionary origin of VTE3 may have been archeal rather than cyanobacterial. In vivo analyses of vte3 mutants and the corresponding homozygous Synechocystis sp PCC6803 sll0418::aphII mutant revealed important differences in enzyme redundancy, the regulation of tocopherol synthesis, and the integration of tocopherol and PQ biosynthesis in cyanobacteria and plants.  相似文献   

18.
Thiamine or vitamin B-1, is an essential constituent of all cells since it is a cofactor for two enzyme complexes involved in the citric acid cycle, pyruvate dehydrogenase and -ketoglutarate dehydrogenase. Thiamine is synthesized by plants, but it is a dietary requirement for humans and other animals. The biosynthetic pathway for thiamine in plants has not been well characterized and none of the enzymes involved have been isolated. Here we report the cloning and characterization of two cDNAs representing members of the maize thi1 gene family encoding an enzyme of the thiamine biosynthetic pathway. This assignment was made based on sequence homology to a yeast thiamine biosynthetic gene and by functional complementation of a yeast strain in which the endogenous gene was inactivated. Using immunoblot analysis, the thi1 gene product was found to be located in a plastid membrane fraction. RNA gel blot analysis of various tissues and developmental stages indicated thi1 expression was differentially regulated in a manner consistent with what is known about thiamine synthesis in plants. This is the first report of cDNAs encoding proteins involved in thiamine biosynthesis for any plant species.  相似文献   

19.
Tocopherols and tocotrienols have been originally identified as essential nutrients in mammals based on their vitamin E activity. These lipid-soluble compounds are potent antioxidants that protect polyunsaturated fatty acids from lipid peroxidation. The biosynthesis of tocopherols and tocotrienols occurs exclusively in photosynthetic organisms. The biosynthetic precursors and the different pathway intermediates have been identified by biochemical studies and the different vitamin E biosynthetic genes (VTE genes) have been isolated in several plants and cyanobacteria. The characterization of transgenic plants overexpressing one or multiple VTE genes combined with the study of vitamin E deficient mutants allows from now on understanding the regulation and the function of tocopherols and tocotrienols in plants.  相似文献   

20.
The first committed step in the biosynthesis of L-ascorbate from D-glucose in plants requires conversion of GDP-L-galactose to L-galactose 1-phosphate by a previously unidentified enzyme. Here we show that the protein encoded by VTC2, a gene mutated in vitamin C-deficient Arabidopsis thaliana strains, is a member of the GalT/Apa1 branch of the histidine triad protein superfamily that catalyzes the conversion of GDP-L-galactose to L-galactose 1-phosphate in a reaction that consumes inorganic phosphate and produces GDP. In characterizing recombinant VTC2 from A. thaliana as a specific GDP-L-galactose/GDP-D-glucose phosphorylase, we conclude that enzymes catalyzing each of the ten steps of the Smirnoff-Wheeler pathway from glucose to ascorbate have been identified. Finally, we identify VTC2 homologs in plants, invertebrates, and vertebrates, suggesting that a similar reaction is used widely in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号