首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The soft tick Ornithodoros hermsi, which ranges in specific arboreal zones of western North America, acts as a vector for the relapsing fever spirochete Borrelia hermsii. Two genomic groups (genomic group I [GGI] and GGII) of B. hermsii are differentiated by multilocus sequence typing yet are codistributed in much of the vector's range. To test whether the tick vector can be infected via immersion, noninfected, colony-derived O. hermsi larvae were exposed to reduced-humidity conditions before immersion in culture suspensions of several GGI and GGII isolates. We tested for spirochetes in ticks by immunofluorescence microscopy and in mouse blood by quantitative PCR of the vtp locus to differentiate spirochete genotypes. The immersed larval ticks were capable of spirochete transmission to mice at the first nymphal feeding. Tick infection with mixed cultures of isolates DAH (vtp-6) (GGI) and MTW-2 (vtp-5) (GGII) resulted in ticks that caused spirochetemias in mice consisting of MTW-2 or both DAH and MTW-2. These findings show that this soft tick species can acquire B. hermsii by immersion in spirochete suspensions, that GGI and GGII isolates can coinfect the tick vector by this method, and that these spirochetes can be cotransmitted to a rodent host.  相似文献   

2.
Ticks were collected from 8 houses in Mvumi Mission village, near Dodoma, Tanzania. All ticks were examined for Borrelia infestation by flagellin gene-based nested polymerase chain reaction. All houses were highly infested with ticks, and all ticks collected were of the Ornithodoros porcinus species. Fifty-one out of 120 ticks were infected with spirochetes, and a flagellin gene sequence comparison showed that most of the spirochetes belonged to Borrelia duttonii, which is the causative agent of tick-borne relapsing fever in East Africa. The rest of the spirochetes were quite different from B. duttonii and instead resembled the New World tick-borne relapsing fever borreliae. Phylogenetic analysis using 16S ribosomal RNA gene sequences also supported the interpretation that the spirochete was a Borrelia species distinct from previously described members of the genus.  相似文献   

3.
Borrelia burgdorferi, the causative agent of Lyme disease, is transmitted to humans by bite of Ixodes scapularis ticks. The mechanisms by which the bacterium is transmitted from vector to host are poorly understood. In this study, we show that the F(ab)(2) fragments of BBE31, a B.burgdorferi outer-surface lipoprotein, interfere with the migration of the spirochete from tick gut into the hemolymph during tick feeding. The decreased hemolymph infection results in lower salivary glands infection, and consequently attenuates mouse infection by tick-transmitted B. burgdorferi. Using a yeast surface display approach, a tick gut protein named TRE31 was identified to interact with BBE31. Silencing tre31 also decreased the B. burgdorferi burden in the tick hemolymph. Delineating the specific spirochete and arthropod ligands required for B. burgdorferi movement in the tick may lead to new strategies to interrupt the life cycle of the Lyme disease agent.  相似文献   

4.
The Lyme disease spirochete, Borrelia burgdorferi, causes a persistent infection in the vertebrate host even though infected animals mount an active immune response against the spirochete. One strategy used by the spirochete to evade vertebrate host immunity is to vary the structure and expression of outer membrane antigens. The vlsE locus represents the best-studied example of antigenic variation in B. burgdorferi. During vertebrate host infection, recombination between the active vlsE locus and silent, partial vlsE copies leads to gene conversion events and the generation of novel alleles at the expression site. In the present study, we followed a population of B. burgdorferi organisms moving through vertebrate host and tick stages to complete one transmission cycle. The major goal of the study was to determine if the vlsE locus was subject to different selective pressure and/or recombination frequency at different stages of the spirochete's life cycle. We report here that the vlsE genetic diversity generated within the rodent host was maintained through the larval and nymphal tick stages. Therefore, naturally infected ticks are likely to transmit spirochete populations with multiple vlsE alleles into naive vertebrate hosts. Although vlsE genetic diversity in mice was maintained through tick stages, the dominant vlsE alleles were different between tick stages as well as between individual ticks. We propose that population-level bottlenecks experienced by spirochetes, especially during the larval-to-nymphal molt, are responsible for individual infected ticks harboring different dominant vlsE alleles. Although vlsE genetic diversity is maintained through tick stages, the VlsE protein is unlikely to be of functional importance in the vector, because the protein was expressed by very few (<1%) bacteria in the vector.  相似文献   

5.
Tick-borne spirochetes include borreliae that cause Lyme disease and relapsing fever in humans. They survive in a triangle of parasitic interactions between the spirochete and its vertebrate host, the spirochete and its tick vector, and the host and the tick. Until recently, the significance of vector-host interactions in the transmission of arthropod-borne disease agents has been overlooked. However, there is now compelling evidence that the pharmacological activity of tick saliva can have a profound effect on pathogen transmission both from infected tick to uninfected host, and from infected host to uninfected tick. The salivary glands of ticks provide a pharmacopoeia of anti-inflammatory, anti-haemostatic and anti-immune molecules. These include bioactive proteins that control histamine, bind immunoglobulins, and inhibit the alternative complement cascade. The effect of these molecules is to provide a privileged site at the tick-host interface in which borreliae and other tick-borne pathogens are sheltered from the normal innate and acquired host immune mechanisms that combat infections. Understanding the key events at the tick vector-host interface, that promote spirochete infection and transmission, will provide a better understanding of the epidemiology and ecology of these important human pathogens.  相似文献   

6.
We outline in this review how Borrelia burgdorferi, the causative agent of Lyme disease, moves from the tick to the vertebrate host, and what molecules are potentially involved in this challenging commute. The survival strategies utilized by the spirochete during transmission and the initial stages of infection are discussed.  相似文献   

7.
Lyme disease, due to infection with the Ixodes-tick transmitted spirochete Borrelia burgdorferi, is the most common tick-transmitted disease in the northern hemisphere. Our understanding of the tick-pathogen-vertebrate host interactions that sustain an enzootic cycle for B. burgdorferi is incomplete. In this article, we describe a method for imaging the feeding of Ixodes scapularis nymphs in real-time using two-photon intravital microscopy and show how this technology can be applied to view the response of Lyme borrelia in the skin of an infected host to tick feeding.  相似文献   

8.
Lyme disease is a tick-borne infection caused by Borrelia burgdorferi sensu lato complex spirochetes. The spirochete is located in the gut of the tick; as the infected tick starts the blood meal, the spirochete must travel through the hemolymph to the salivary glands, where it can spread to and infect the new host organism. In this study, we determined the crystal structures of the key outer surface protein BBE31 from B. burgdorferi and its orthologous protein BSE31 (BSPA14S_RS05060 gene product) from B. spielmanii. BBE31 is known to be important for the transfer of B. burgdorferi from the gut to the hemolymph in the tick after a tick bite. While BBE31 exerts its function by interacting with the Ixodes scapularis tick gut protein TRE31, structural and mass spectrometry data revealed that BBE31 has a glutathione (GSH) covalently attached to Cys142 suggesting that the protein may have acquired some additional functions in contrast to its orthologous protein BSE31, which lacks any interactions with GSH. In the current study, in addition to analyzing the potential reasons for GSH binding, the three-dimensional structure of BBE31 provides new insights into the molecular details of the transmission process as the protein plays an important role in the initial phase before the spirochete is physically transferred to the new host. This knowledge will be potentially used for the development of new strategies to fight against Lyme disease.  相似文献   

9.
Lyme disease is a zoonosis caused by infection with bacteria belonging to the Borrelia burgdorferi species after the bite of an infected tick. Even though an infection by this bacterium can be effectively treated with antibiotics, when the infection stays unnoticed B. burgdorferi can persist and chronic post-treatment Lyme disease syndrome is able to develop. Although a cellular and humoral response is observed after an infection with the Borrelia bacteria, these pathogens are still capable to stay alive. Several immune evasive mechanisms have been revealed and explained and much work has been put into the understanding of the contribution of the innate and adaptive immune response. This review provides an overview with the latest findings regarding the cells of the innate and adaptive immune systems, how they recognize contribute and mediate in the killing of the B. burgdorferi spirochete. Moreover, this review also elaborates on the antigens that are expressed by on the spirochete. Since antigens drive the adaptive and, indirectly, the innate response, this review will discuss briefly the most important antigens that are described to date. Finally, there will be a brief elaboration on the escape mechanisms of B. burgdorferi with a focus on tick salivary proteins and spirochete antigens.  相似文献   

10.
Salp15, a 15-kDa tick salivary gland protein, has several suppressive modes of activity against host immunity and plays a critical role in the transmission of Lyme disease spirochetes in Ixodes scapularis and Ixodes ricinus, major vectors of Lyme disease in North America and Western Europe. Salp15 adheres to Borrelia burgdorferi and specifically interacts with its outer surface protein C (OspC), protecting the spirochete from antibody-mediated cytotoxicity and facilitating infection in the mice. Recently, we identified two Salp15 homologues, IperSalp15-1 and IperSalp15-2, in Ixodes persulcatus, a vector for Lyme disease in Japan. Here we describe the function of IperSalp15 in the transmission of Lyme borreliosis. To investigate the function of IperSalp15, recombinant IperSalp15-1 and IperSalp15-2 were prepared in bacterial and insect cells. Both were identified in the sera of tick-immunized hamsters, indicating that these are secretory proteins in exposed host animals. Solid-phase overlay and indirect fluorescence assays showed that IperSalp15 binds to OspC from B. burgdorferi, Borrelia garinii, and Borrelia afzelii. Importantly, this binding likely protected the spirochete from antibody-mediated cytotoxicity in vitro. In addition, IperSalp15 tended to facilitate infection in mice. Thus, further characterization of tick molecules, including IperSalp15, could lead to the development of new strategies to prevent the transmission of tick-borne diseases.  相似文献   

11.
The DNA of an isolate of Borrelia duttonii, an agent of relapsing fever is present as seven major species ranging in size from 10 kb to greater than 150 kb. Additionally, this isolate contains low copy number species, both smaller and larger than these seven major elements. No one of these individual DNA species obviously corresponds to the bacterial chromosome, unlike the situation in Borrelia hermsii, another relapsing fever Borrelia. Thus it appears that B. duttonii has a unique segmented arrangement of its genetic material. Cloned DNA fragments containing coding sequences specific for variant surface antigens of B. duttonii hybridize to a closely migrating, high copy number subset of these genetic elements.  相似文献   

12.
Borrelia burgdorferi, the causative agent of Lyme disease, shows a great ability to adapt to different environments, including the arthropod vector, and the mammalian host. The success of these microorganisms to survive in nature and complete their enzootic cycle depends on the regulation of genes that are essential to their survival in the different environments. This review describes the current knowledge of gene expression by B. burgdorferi in the tick and the mammalian host. The functions of the differentially regulated gene products as well as the factors that influence their expression are discussed. A thorough understanding of the changes in gene expression and the function of the differentially expressed antigens during the life cycle of the spirochete will allow a better control of this prevalent infection and the design of new, second generation vaccines to prevent infection with the spirochete.  相似文献   

13.
Plasmid location of Borrelia purine biosynthesis gene homologs.   总被引:18,自引:9,他引:9       下载免费PDF全文
N Margolis  D Hogan  K Tilly    P A Rosa 《Journal of bacteriology》1994,176(21):6427-6432
The Lyme disease spirochete Borrelia burgdorferi must survive in both its tick vector and its mammalian host to be maintained in nature. We have identified the B. burgdorferi guaA gene encoding GMP synthetase, an enzyme involved in de novo purine biosynthesis that is important for the survival of bacteria in mammalian blood. This gene encodes a functional product that will complement an Escherichia coli GMP synthetase mutant. The gene is located on a 26-kb circular plasmid, adjacent to and divergent from the gene encoding the outer surface protein C (OspC). The guaB gene homolog encoding IMP dehydrogenase, another enzyme in the purine biosynthetic pathway, is adjacent to guaA. In Borrelia hermsii, a tick-borne relapsing fever spirochete, the guaA and guaB genes are located on a linear plasmid. These are the first genes encoding proteins of known function to be mapped to a borrelial plasmid and the only example of genes encoding enzymes involved in the de novo purine biosynthesis pathway to be mapped to a plasmid in any organism. The unique plasmid location of these and perhaps other housekeeping genes may be a consequence of the segmented genomes in borreliae and reflect the need to adapt to both the arthropod and mammalian environments.  相似文献   

14.
Previous work has indicated that both Borrelia burgdorferi and the process of tick feeding (saliva) modulate the host immune response. Molecules have been identified in tick saliva that effect T cell proliferation by binding to specific cytokines, thereby promoting a Th2 cytokine response that does not afford protection against tick-transmitted B. burgdorferi in mice. Moreover, reconstitution of a Th1-biased T cell response prior to spirochete challenge effectively neutralizes tick modulation of host immunity and affords protection against tick transmission of spirochetes. The current studies were undertaken to determine the effect of neutralizing specific Th2 cytokines prior to tick feeding and subsequent transmission of B. burgdorferi. The results indicate that suppression of both IL-4 and IL-5 prior to the feeding of B. burgdorferi-infected ticks significantly decreased spirochete load in target organs such as joint, bladder, heart, and skin of the Lyme disease-susceptible host.  相似文献   

15.
Borrelia hermsii, a causative agent of relapsing fever of humans in western North America, is maintained in enzootic cycles that include small mammals and the tick vector Ornithodoros hermsi. In mammals, the spirochetes repeatedly evade the host’s acquired immune response by undergoing antigenic variation of the variable major proteins (Vmps) produced on their outer surface. This mechanism prolongs spirochete circulation in blood, which increases the potential for acquisition by fast-feeding ticks and therefore perpetuation of the spirochete in nature. Antigenic variation also underlies the relapsing disease observed when humans are infected. However, most spirochetes switch off the bloodstream Vmp and produce a different outer surface protein, the variable tick protein (Vtp), during persistent infection in the tick salivary glands. Thus the production of Vmps in mammalian blood versus Vtp in ticks is a dominant feature of the spirochete’s alternating life cycle. We constructed two mutants, one which was unable to produce a Vmp and the other was unable to produce Vtp. The mutant lacking a Vmp constitutively produced Vtp, was attenuated in mice, produced lower cell densities in blood, and was unable to relapse in animals after its initial spirochetemia. This mutant also colonized ticks and was infectious by tick-bite, but remained attenuated compared to wild-type and reconstituted spirochetes. The mutant lacking Vtp also colonized ticks but produced neither Vtp nor a Vmp in tick salivary glands, which rendered the spirochete noninfectious by tick bite. Thus the ability of B. hermsii to produce Vmps prolonged its survival in blood, while the synthesis of Vtp was essential for mammalian infection by the bite of its tick vector.  相似文献   

16.
Lyme borreliosis is an infectious disease caused by the tick-borne spirochete Borrelia burgdorferi, which carries the potential for chronic infection. Ag on the etiologic Borrelia are currently being defined structurally and their ability to elicit immune responses delineated. EBV can be used to immortalize human B. burgdorferi-specific B cells from infected donors and generate antibodies against antigenic epitopes encountered in natural infection. A human mAb secreting EBV-transformed B cell line, D7, has been developed that is specific for a 93-kDa B. burgdorferi protein and has been used to characterize this potentially important Ag. D7 produces an IgG3 antibody that detects the 93-kDa Ag as well as smaller fragments at 46 kDa and lower molecular mass. The antibody detects similar epitopes on all B. burgdorferi isolates tested and on a Borrelia hermsii protein with molecular mass greater than 100 kDa but binds poorly to Treponema species. In contrast, polyclonal sera from Lyme disease patients show little binding to the homologous Ag in B. hermsii. Structurally, the 93-kDa protein is associated with the flagellum and may be firmly anchored in the protoplasmic cylinder. It is not solubilized by nonionic detergent treatment of the whole Borrelia. Antibodies against a comparable m.w. protein are present in sera from patients with both early and late infection. Thus, antibodies against this Ag are a sensitive and specific marker of Borrelia infection. This Ag is likely of structural importance and may represent a target of host defenses.  相似文献   

17.
The tick Ixodes scapularis is an efficient vector for microbes, including the Lyme disease agent Borrelia burgdorferi. Ticks engorging on vertebrates induce recruitment of inflammatory cells to the bite site. For efficient transmission to the vector, pathogens have to traffic through this complex feeding site while avoiding the deleterious effects of immune cells. We show that a tick protein, Salp25D, plays a critical role-in the mammalian host-for acquisition of Borrelia burgdorferi by the vector. Silencing salp25D in tick salivary glands impaired spirochete acquisition by ticks engorging on B. burgdorferi-infected mice. Immunizing mice against Salp25D also decreased Borrelia acquisition by I. scapularis. Salp25D detoxified reactive oxygen species at the vector-pathogen-host interface, thereby providing a survival advantage to B. burgdorferi at the tick feeding site in mice. These data demonstrate that pathogens can exploit arthropod molecules to defuse mammalian responses in order to successfully enter the vector.  相似文献   

18.
19.
Borrelia miyamotoi, a spirochete found in the hard tick Ixodes ricinus, is thought to cause relapsing fever. The disease caused by this bacterium can manifest with high fever, fatigue and other symptoms. It may also lead to central nervous system involvement with symptoms similar to meningoencephalitis. DNA from ticks from the greater Augsburg region in Germany was subjected to qPCR for Borrelia spp., followed by nested PCR and subsequent sequencing for species identification of the qPCR positive samples. From 112 ticks, 20 were found to be positive for Borrelia. The DNA sequenced showed 50% Borrelia afzelli, 15% Borrelia garinii, 5% Borrelia valaisiana and one sequence was identified as Borrelia miyamotoi. The positive identification of Borrelia miyamotoi is unlikely to be due to contamination. In conclusion, Borrelia miyamotoi has been found in a tick in the Augsburg region for the first time. This follows on from previous reports of a low incidence of this bacterium in southern Germany around Lake Constance and in the Munich region. This infectious agent should be taken into account when patients present with recurring fever or neurological symptoms which cannot be otherwise explained. Tick-borne relapsing fever should now be considered as a cause of such symptoms and medical professionals should contemplate differential Borrelia testing when presented with corresponding symptoms.  相似文献   

20.
The density of spirochetes in field-collected or experimentally infected ticks is estimated mainly by assays based on microscopy. In this study, a real-time quantitative PCR (qPCR) protocol targeting the Borrelia burgdorferi-specific recA gene was adapted for use with a Lightcycler for rapid detection and quantification of the Lyme disease spirochete, B. burgdorferi, in field-collected Ixodes scapularis ticks. The sensitivity of qPCR for detection of B. burgdorferi DNA in infected ticks was comparable to that of a well-established nested PCR targeting the 16S-23S rRNA spacer. Of the 498 I. scapularis ticks collected from four northeastern states (Rhode Island, Connecticut, New York, and New Jersey), 91 of 438 (20.7%) nymphal ticks and 15 of 60 (25.0%) adult ticks were positive by qPCR assay. The number of spirochetes in individual ticks varied from 25 to 197,200 with a mean of 1,964 spirochetes per nymphal tick and a mean of 5,351 spirochetes per adult tick. No significant differences were found in the mean numbers of spirochetes counted either in nymphal ticks collected at different locations in these four states (P = 0.23 by one-way analysis of variance test) or in ticks infected with the three distinct ribosomal spacer restriction fragment length polymorphism types of B. burgdorferi (P = 0.39). A high degree of spirochete aggregation among infected ticks (variance-to-mean ratio of 24,877; moment estimate of k = 0.279) was observed. From the frequency distribution data and previously published transmission studies, we estimated that a minimum of 300 organisms may be required in a host-seeking nymphal tick to be able to transmit infection to mice while feeding on mice. These data indicate that real-time qPCR is a reliable approach for simultaneous detection and quantification of B. burgdorferi infection in field-collected ticks and can be used for ecological and epidemiological surveillance of Lyme disease spirochetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号