共查询到10条相似文献,搜索用时 0 毫秒
1.
Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. III. The role of ethylene 总被引:2,自引:0,他引:2
While ethylene is suspected to be one of the many factors that play a role in rooting, some studies have found that ethylene can promote rooting, while others show it to inhibit this process or to have no effect. Using seedlings of sunflower ( Helianthus annuus L. cv. Dahlgren 131) we carried out observations on the rates of ethylene production and the levels of the ethylene precursor, 1-aminocyclopropane-l-car-boxylic acid (ACC), and ACC conjugate, l-(malonylamino)cyclopropane-l-car-boxylic acid (MACC), during the process of root initiation. The changes in these substances in the base of the hypocotyls (the portion that produces roots) were compared to the changes that occurred in the top of the hypocotyls (non-rooting portion). We also supplied a number of presumptive inhibitors of ethylene biosynthesis and inhibitors of ethylene action for short periods during the early and critical stages of root formation. Their effects on ethylene action, synthesis and rooting were examined. We conclude that the wound-induced increase in ethylene, seen within 3 h of production of the cuttings, is a key stimulatory factor in the formation of root primordia. When this increase in ethylene is localized in the lower portion of the hypocotyl, there is a promotion of rooting. On the other hand, higher concentrations in the top of the hypocotyls (as compared to the bottom) may inhibit rooting. 相似文献
2.
3.
Background and Aims
Etiolation symptoms and the greening process are usually studied on dark-germinated seedlings and this raises the question – can these results be generalized for plants growing under field conditions? This work examines various aspects of the plastid differentiation under the covering of the achene wall, which often remains attached to the cotyledons of sunflower (Helianthus annuus) seedlings grown under light.Methods
Cotyledons of 7- to 10-d-old sunflower seedlings grown in the dark and on light were examined. The partially covered cotyledons were sectioned into light-exposed, covered and transition zones. Pigment contents, 77 K fluorescence spectroscopy, electron microscopy and fluorescence imaging, along with fluorescence kinetic methods, were used.Key Results
The light-exposed zone of the partially covered cotyledons was similar to cotyledons developed without achene covering. However, some of the plastids had prolamellar bodies among the granal thylakoid membranes; despite this no protochlorophyllide was detected. The fully covered, yellowish sections contained protochlorophyllide forms emitting at 633 and 655 nm and well-developed prolamellar bodies, similar to those of etiolated cotyledons. In addition, reduced amounts of chlorophyll a, chlorophyll b and stacked thylakoid membrane pairs were found in this region. The transitional sections showed a mixture of the characteristics of the covered and exposed sections. Various, but significantly different values of the photosynthetic activity parameters were found in each sector of the partially covered cotyledons.Conclusions
The partial covering of the achene wall shades the cotyledon tissues effectively, enough to provoke the appearance of etiolation phenomena, i.e. the permanent presence of flash-photoactive protochlorophyllide complexes and prolamellar bodies (with or without protochlorophyllide), which proves that these phenomena may appear under natural illumination conditions.Key words: Cotyledon, etio-chloroplast, etioplast, etiolation, Helianthus annuus, photosynthetic activity, protochlorophyllide, prolamellar body, sunflower 相似文献4.
5.
Hypocotyl-derived callus from the Helianthus annuus L. inbred line SS415B regenerated significantly more plants if the seedlings were grown in the light. The difference between light- and dark-grown seedlings was not correlated with differences in seedling ethylene production, but seemed to be due to a difference in sensitivity to ethylene at a specific time during seedling growth. Treating 3-day-old dark-grown seedlings with 10 μ M aminoethoxyvinylglycine (AVG) effectively inhibited ethylene production for at least 7 days. Hypocotyl callus derived from AVG-treated seedlings gave the same amount of regeneration as callus from light-grown seedlings. Promotion of regeneration by AVG was not seen unless the 3-day-old seedlings were grown for 4 additional days prior to culturing hypocotyl explants. The effects of AVG could be reversed by treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) during these 4 days. After the 4 days, ACC was no longer effective. 相似文献
6.
Abstract. The influence of a slow stress and recovery cycle on the pattern of leaf expansion in four diverse sunflower cultivars ( Helianthus annuus L. cvs. Hysun 31, Havasupai, Hopi and Seneca) was studied in a glasshouse. Stress had no significant effect on the time of flower bud emergence and anthesis, or on final leaf number, but delayed the appearance of leaves at high insertions in all cultivars except Hysun 31.
Leaf expansion was markedly reduced as the predawn leaf water potential decreased from −0.35 to −0.60 MPa, and the predawn turgor pressure decreased from 0.3 to 0.2 MPa, and expansion ceased at a predawn leaf water potential of about −1.0 MPa, i.e. when the predawn turgor pressure reached zero.
The leaves most reduced in final size when water was withheld were those at the insertions which grew the most rapidly in unstressed plants. The maximum reduction in final leaf size of 25–35% was similar in all cultivars and was due to retardation of the rate of leaf expansion: the duration of leaf expansion was actually increased by stress. However, leaves that were initiated during stress, but emerged after rewatering, had final leaf areas at least equal to those in the unstressed plants: in the cultivar Seneca, the final size of leaves of high insertion was significantly greater in stressed than unstressed plants, whereas in the three other cultivars the final leaf sizes were similar in both treatments. All four cultivars examined adjusted osmotically to the same degree, but leaf water potentials in one, Seneca, increased more rapidly after rewatering than in the other three, and this may have contributed to the greater relative leaf size in the leaves of high insertion in this cultivar. 相似文献
Leaf expansion was markedly reduced as the predawn leaf water potential decreased from −0.35 to −0.60 MPa, and the predawn turgor pressure decreased from 0.3 to 0.2 MPa, and expansion ceased at a predawn leaf water potential of about −1.0 MPa, i.e. when the predawn turgor pressure reached zero.
The leaves most reduced in final size when water was withheld were those at the insertions which grew the most rapidly in unstressed plants. The maximum reduction in final leaf size of 25–35% was similar in all cultivars and was due to retardation of the rate of leaf expansion: the duration of leaf expansion was actually increased by stress. However, leaves that were initiated during stress, but emerged after rewatering, had final leaf areas at least equal to those in the unstressed plants: in the cultivar Seneca, the final size of leaves of high insertion was significantly greater in stressed than unstressed plants, whereas in the three other cultivars the final leaf sizes were similar in both treatments. All four cultivars examined adjusted osmotically to the same degree, but leaf water potentials in one, Seneca, increased more rapidly after rewatering than in the other three, and this may have contributed to the greater relative leaf size in the leaves of high insertion in this cultivar. 相似文献
7.
Shoot activity has been reported to affect rates of ion uptake by plant roots in other ways than merely through supply of assimilates. To elucidate the mechanisms by which a signal from the upper part of the plant controls the rate of K+ and NO3 − uptake by roots, both uptake of K+ and NO3 − and secretion into the xylem of young sunflower plants ( Helianthus annuus L.) were measured after changes in light intensity.
No close correlation was observed between the uptake of NO3 − and that of K+ ; an increase in light intensity produced a much greater stimulation of NO3 − uptake than of K+ uptake. On the other hand, secretion of NO3 − into the xylem was tightly coupled to that of K+ , and this coupling was strongly disturbed by excision of the root. The results suggest the involvement of the K2 -malate shuttle on the regulation by the shoot of K+ and NO3 − secretion in the xylem, which is linked to NO3 − uptake, while K+ uptake is independent of this regulation mechanism. 相似文献
No close correlation was observed between the uptake of NO
8.
Sunflower plants [Helianthus annuus L.) were subjected to soil drought. Leaf conductance declined with soil water content even when the shoot was kept turgid throughout the drying period. The concentration of abscisic acid in the xylem sap increased with decreasing soil water content. No general relation could be established between abscisic acid concentration in the xylem sap and leaf conductance due to marked differences in the sensitivity of leaf conductance of individual plants to abscisic acid from the xylem sap. The combination of these results with data from Gollan, Schurr & Schulze (1992, see pp. 551–559, this issue) reveals close connection of the effectiveness of abscisic acid as a root to shoot signal to the nutritional status of the plant. 相似文献
9.
Sunflower plants (Helianthus annuus L.) were subjected to soil drying with their shoots either kept fully turgid using a Passioura-type pressure chamber or allowed to decrease in water potential. Whether the shoots were kept turgid or not, leaf conductance decreased below a certain soil water content. During the soil drying, xylem sap samples were taken from individual intact and transpiring plants. Xylem sap concentrations of nitrate and phosphate decreased with soil water content, whereas the concentrations of the other anions (SO42 and Cl?) remained unaltered. Calcium concentrations also decreased. Potassium, magnesium, manganese and sodium concentrations stayed constant during soil drying. In contrast, the pH, the buffering capacity at a pH below 5 and the cation/anion ratio increased after soil water content was lowered below a certain threshold. Amino acid concentration of the xylem sap increased with decreasing soil water content. The effect of changes in ion concentrations in the xylem sap on leaf conductance is discussed. 相似文献
10.
Synchronously dividing cultures of the unicellular green alga Scenedesmus obtusiusculus were cultivated for 24 or 70 h in medium high (1000 μM) or low (60 μM) in phosphorus. Aliquots of AlCl3 (0, 37, 74, 111, 148, 185, or 222 μmol) were added daily to 1 l cell suspension at the end of the cell division phase. Algae were also grown in media with different pH, adjusted with HCl, in the absence of AlCl3 .
Effects of Al on cell metabolism vary with the intracellular Al concentration and with the concentration of Al available per cell. When the concentration of phosphorus is low, internal concentrations of Al are high and the chlorophyll content and the net dry matter production per cell increase, whereas the photosynthesis and the cell division are increased. Presence of Al in a low P medium decreases the pH of the medium down to 4.5. There are only small effects of Al in the presence of P, due to precipitation of most of the Al with P in the medium.
Despite the Al-induced decrease of the pH of the culture medium, effects caused by Al cannot be explained as a pH effect. Instead, the Al effect may, at least to some extent, be related to a decrease in availability of P in the metabolism, due to formation of aluminium phosphate inside the cell. 相似文献
Effects of Al on cell metabolism vary with the intracellular Al concentration and with the concentration of Al available per cell. When the concentration of phosphorus is low, internal concentrations of Al are high and the chlorophyll content and the net dry matter production per cell increase, whereas the photosynthesis and the cell division are increased. Presence of Al in a low P medium decreases the pH of the medium down to 4.5. There are only small effects of Al in the presence of P, due to precipitation of most of the Al with P in the medium.
Despite the Al-induced decrease of the pH of the culture medium, effects caused by Al cannot be explained as a pH effect. Instead, the Al effect may, at least to some extent, be related to a decrease in availability of P in the metabolism, due to formation of aluminium phosphate inside the cell. 相似文献