首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previously, 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) has been used in combination with electron paramagnetic resonance (EPR) spectrometry to trap nitric oxide (NO(*)). The reaction between DBNBS and NO(*) yields a radical product which gives rise to an EPR signal consisting of three lines with an A(N) = 0.96 mT, but the structure of this product is unknown. A two-stage high-performance liquid chromatography fractionation was performed to isolate the radical product from the other components in the DBNBS/NO(*) reaction mixture. The fractions containing the radical product were identified by the presence of the three-line EPR signal, and then these fractions were analyzed by negative ion fast atom bombardment-mass spectrometry (FAB-MS). Collectively, the FAB-MS data suggested that the radical product is the monosodium electrostatic complex with the dianion, bis(2,6-dibromo-4-sulfophenyl) nitroxyl. Analysis of the Gaussian and Lorentzian linewidths of the EPR signal suggested that bis(2,6-dibromo-4-sulfophenyl) nitroxyl molecules may group together to form micelles. Further studies also indicated that significant amounts of nitrogen and nitrate were produced during the reaction between DBNBS and NO(*). A reaction scheme consistent with these results is presented.  相似文献   

2.
Spin-trapping of superoxide ion, O2-, which is produced from two different sources (OH(-)-DMSO and xanthine-xanthine oxidase systems), was investigated by use of a water-soluble, notroso-aromatic spin trap, sodium 3,5-dibromo-4-nitrosobenzene-sulfonate (DBNBS). It was found that O2- from all sources was easily trapped by DBNBS to yield the stable O2- adduct showing the ESR spectrum consisting of a triplet of a triplet [aN (1) = 12.63 G and aH (2) = 0.71 G]. Hydroperoxy radical (HO2.), which can be generated from the oxidation of hydrogen peroxide with Ce4+ ion, was not trapped by DBNBS. These results indicate that the trapped radical is O2-, but not HO2..  相似文献   

3.
Using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS), an oxidant was previously detected in the plasma of patients with renal failure and the synovial tissue of rheumatoid arthritis patients. This oxidant has been shown to react with DBNBS to give a 3-line electron paramagnetic resonance (EPR) spectrum, previously assigned to the DBNBS radical cation (DBNBS*(+). However, confusion has arisen as to whether this paramagnetic species is indeed DBNBS*(+) or, rather, the DBNBS sulfite radical adduct (DBNBS-SO(3)*(-)). In the present study, DBNBS*(+) (a(N)=1.32 mT) was distinguished from DBNBS-SO(3)*(-) (a(N)=1.32 mT with an additional splitting of a(H)=0.06 mT) by (a) using different EPR parameters, (b) determining the effect of addition of sulfite on the EPR spectrum resulting from the incubation of DBNBS with either human biofluids or the horseradish peroxidase (HRP)-hydrogen peroxide (H(2)O(2)) system, and (c) replacing DBNBS with its analogues (DBNBS-d(2,) DBNBS-15N and DBNBS-d(2)-15N) in the two systems.  相似文献   

4.
The aim of the present study was to apply spin trapping/EPR spectroscopy to investigate the existence and biological role of the L-arginine/nitric oxide pathway in human platelet aggregation. Three different spin traps were used: two nitroso, 3,5-dibromo-4-nitrosobenzenesulfonate (DBNBS) and 2-methyl-2-nitrosopropane (MNP), and a nitrone, 5,5-dimethyl-1-pyrroline N-oxide (DMPO). The effect of spin-trap concentration on the collagen-induced human platelet aggregation was compared to the anti-aggregatory effect caused by L-arginine. The results show that the nitroso spin traps (DBNBS and MNP) are more effective than L-arginine in preventing platelet aggregation. DMPO has virtually no effect on the collagen-induced aggregation except at a high concentration (300 mM). Furthermore, activation of platelets with a low concentration of collagen (17 micrograms/ml) and in the presence of DBNBS or MNP yields several EPR-detectable spin adducts. Some of the observed spin adducts do not correspond to those originating from the interaction of a free radical, nitric oxide (NO.) gas, with the spin traps [Arroyo, C.M. & Kohno, M. (1991) Free Radical Res. Commun. 14, 145-155]. Only one adduct of DBNBS, with a relative intensity of 0.1, observed in the washed-platelet experiment and in the presence of superoxide dismutase, is similar to the EPR spectrum obtained following a reaction of pure NO. gas with DBNBS. This suggests that the EPR spectrum of the DBNBS adduct consisting of a triplet may originate from the production of NO. by these cells. Additional DBNBS and MNP spin adducts were generated during platelet activation in the presence of Ca2+ and of a cytosol-depleted L-arginine preparation from washed platelets to which L-arginine was subsequently added. The formation of these DBNBS and MNP spin adducts were inhibited by N omega-methyl-L-arginine (MeArg, 100 microM), suggesting that these originated from a product of NO synthase. Furthermore, the formation of DBNBS and MNP spin adducts in platelet suspensions was enhanced by the presence of superoxide dismutase; however, their formation was prevented by the endothelial-derived relaxing factor (EDRF) inhibitors methylene blue and hemoglobin. The results from the MeArg and EDRF inhibitor experiments support the existence of the L-arginine/NO pathway in platelets. In addition, the prevention of spin-adduct formation by EDRF inhibitors, suggests that the mechanisms of EDRF formation and the L-arginine/NO pathway in endothelial cells and platelets are similar.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The antioxidant activities of probucol were measured in the oxidations of methyl linoleate in homogeneous solution and soybean phosphatidylcholine liposomal membranes and also of low-density lipoproteins. When an excess amount of probucol was reacted with galvinoxyl, the EPR spectrum of galvinoxyl disappeared and a new triplet EPR signal was found: g = 2.0058 and aH(2H) = 0.14 mT. The identical EPR spectrum was observed when probucol was reacted with tert-butoxyl radical generated from di-tert-butylperoxy oxalate. This EPR signal disappeared rapidly when reacted with either alpha-tocopherol or 6-O-palmitoyl-ascorbic acid. Probucol suppressed the free-radical-mediated oxidations of methyl linoleate in hexane and in acetonitrile, in a dose-dependent manner. Its antioxidant activity was 17.5-fold less than that of alpha-tocopherol in hexane. Probucol incorporated into soybean phosphatidylcholine liposomes suppressed its oxidation. The antioxidant activity of probucol was less than that of alpha-tocopherol, but the difference between the two antioxidant activities was smaller in the membranes than in homogeneous solution. Probucol also suppressed the oxidation of low-density lipoprotein. Interestingly, probucol suppressed the oxidation of LDL as efficiently as alpha-tocopherol, implying that physical factors as well as chemical reactivity are important in determining the overall activity of antioxidant in low-density lipoprotein.  相似文献   

6.
A J Carmichael 《FEBS letters》1990,261(1):165-170
Vanadyl (VO2+) complexed to RNA reacts with hydrogen peroxide in a Fenton-like manner producing hydroxyl radicals (.OH). The hydroxyl radicals can be spin trapped with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) forming the DMPO-OH spin adduct. In addition, in the presence of ethanol the formation of the hydroxyethyl radical adduct of DMPO (DMPO-ETOH) confirms the production of hydroxyl radicals by the RNA/VO2+ complex. When the reaction between the RNA/VO2+ complex and H2O2 is carried out in the presence of the spin trap 2-methyl-2-nitrosopropane (MNP), radicals produced in the reaction of .OH with RNA are trapped. Base hydrolysis of the MNP-RNA adducts (pH 12) followed by a reduction in the pH to pH 7 after hydrolysis is complete, yields an MNP adduct with a well-resolved ESR spectrum identical to the ESR spectrum obtained from analogous experiments with poly U. The ESR spectrum consists of a triplet of sextets (aN = 1.48 mT, a beta N = 0.25 mT and a beta H = 0.14 mT), indicating that the unpaired nitroxide electron interacts with the nuclei of a beta-nitrogen and beta-hydrogen. The results suggest that the .OH generated in the RNA/VO2+ reaction with H2O2 add to the C(5) carbon of uracil forming a C(6) carbon centered radical. This radical is subsequently spin trapped by MNP.  相似文献   

7.
We report that a lactoperoxidase (LPO) metabolite derived from nitrite (NO2-) catalyses one-electron oxidation of biological electron donors and antioxidants such as NADH, NADPH, cysteine, glutathione, ascorbate, and Trolox C. The radical products of the reaction have been detected and identified using either direct EPR or EPR combined with spin trapping. While LPO/H2O2 alone generated only minute amounts of radicals from these compounds, the yield of radicals increased sharply when nitrite was also present. In aerated buffer (pH 7) the nitrite-dependent oxidation of NAD(P)H by LPO/H2O2 produced superoxide radical, O2*-, which was detected as a DMPO/*O2H adduct. We propose that in the LPO/H2O2/NO2-/biological electron donor systems the nitrite functions as a catalyst because of its preferential oxidation by LPO to a strongly oxidizing metabolite, most likely a nitrogen dioxide radical *NO2, which then reacts with the biological substrates more efficiently than does LPO/H2O2 alone. Because both nitrite and peroxidase enzymes are ubiquitous our observations point at a possible mechanism through which nitrite might exert its biological and cytotoxic action in vivo, and identify some of the physiological targets which might be affected by the peroxidase/H2O2/nitrite systems.  相似文献   

8.
Among nitrogen oxides, NO and NO2 are free radicals and show a variety of biological effects. NO2 is a strongly oxidizing toxicant, although NO, not oxidizing as NO2, is toxic in that it interacts with hemoglobin to form nitrosyl-and methemoglobin. Nitrosylhemoglobin shows a characteristic electron spin resonance (ESR) signal due to an odd electron localized on the nitrogen atom of NO and reacts with oxygen to yield nitrate and methemoglobin, which is rapidly reduced by methemoglobin reductase in red cells. NO was found to inhibit the reductase activity. Part of NO inhaled in the body is oxidized by oxygen to NO2, which easily dissolves in water and converts to nitrite. The nitrite oxyhemoglobin autocatalytically after a lag. The mechanism of the oxidation, particularly the involvement of superoxide, was controversial. The stoichiometry of the reaction has now been established using nitrate ion electrode and a methemoglobin free radical was detected by ESR during the oxidation. Complete inhibition of the autocatalysis by aniline or aminopyrine suggests that the radical catalyzes conversion of nitrite to NO2, which oxidizes oxyhemoglobin. Recently NO was shown to be one of endothelium- derived relaxing factors and the relaxation induced by the factor was inhibited by hemoglobin and potentiated by superoxide dismutase.  相似文献   

9.
Pseudomonas aureofaciens truncates the respiratory reduction of nitrate (denitrification) at the level of N2O. The nitrite reductase from this organism was purified to apparent electrophoretic homogeneity and found to be a blue copper protein. The enzyme contained 2 atoms of copper/85 kDa, both detectable by electron paramagnetic resonance (EPR) spectroscopy. The protein was dimeric, with subunits of identical size (40 +/- 3 kDa). Its pI was 6.05. The EPR spectrum showed an axial signal g at 2.21(8) and g at 2.04(5). The magnitude of the hyperfine splitting (A parallel = 6.36 mT) indicated the presence of type 1 copper only. The electronic spectrum had maxima at 280 nm, 474 nm and 595 nm (epsilon = 7.0 mM-1 cm-1), and a broad shoulder around 780 nm. A copper protein of low molecular mass (15 kDa), with properties similar to azurin, was also isolated from P. aureofaciens. The electronic spectrum of this protein showed a maximum at 624 nm in the visible range (epsilon = 2.5 mM-1 cm-1) and pronounced structures in the ultraviolet region. The EPR parameters were g parallel = 2.26(6) and g perpendicular = 2.05(6), with A parallel = 5.8 mT. The reduced azurin transferred electrons efficiently to nitrite reductase; the product of nitrite reduction was nitric oxide. The specific nitrite-reducing activity with ascorbate-reduced phenazine methosulfate as electron donor was 1 mumol substrate min-1 mg protein-1. The reaction product again was nitric oxide. Nitrous oxide was the reaction product from hydroxylamine and nitrite and from dithionite-reduced methyl viologen and nitrite. No 'oxidase' activity could be demonstrated for the enzyme. Our data disprove the presumed exclusiveness of cytochrome cd1 as nitrite reductase within the genus Pseudomonas.  相似文献   

10.
A method for the detection of the nitric oxide radical (NO) in oxygen-containing aqueous solution by means of electron paramagnetic resonance spectroscopy (EPR) is described. NO evolving from the spontaneous decomposition of 3-morpholinosydnonimine (SIN-1) was trapped by Fe(2+)-diethyldithiocarbamate (DETC) complex dissolved in yeast cell membranes. The resulting mononitrosyl-Fe(2+)-(DETC)2 complex was stable and exhibited a characteristic EPR signal at g perpendicular = 2.04 and g parallel = 2.02 with an unresolved triplet hyperfine structure at g perpendicular in frozen solution and an isotropic triplet signal at gav = 2.03 at 37 degrees C. The amount of NO trapped was calculated from the amplitude of one of the triplet lines calibrated by means of a dinitrosyl-Fe(2+)-thiosulfate standard. The lower detection limit of NO was 0.5 nmol/(ml x h) due to a low background NO signal. The upper detection limit was about 10 nmol NO/40 mg traps (DETC-loaded yeast cells), because of saturation of traps. The trapping efficiency approached 60% under anaerobic conditions and with low concentrations of SIN-1, but decreased progressively with higher concentrations and in the presence of oxygen. Nitrite (up to 0.1 mM) did not increase the background NO level. The sensitivity was sufficient to follow the rate of NO release from SIN-1 on-line at 37 degrees C in a flat quartz cuvette. The time course of NO release detected by EPR spectrometry correlated with the time course of nitrite accumulation measured by diazotation. In conclusion, this method will permit the on-line detection of NO formation from endogenous and pharmacological sources in oxygen-containing aqueous media.  相似文献   

11.
By using the ESR spin trapping technique with the N-methyl-D-glucamine dithiocarbamate (MGD)2-Fe(II) complex, the generation of nitric oxide (NO), a gaseous free radical, was observed in NO spin trapping solution bubbled with the filtered main-stream of cigarette smoke. The ESR signal with a three-line spectrum characteristic of an NO radical, which was not observed immediately after bubbling of smoke, started rapidly increasing with time up to around 25 min after the last addition of ferrous ions Fe(II), and then slowly approached a peak value dependent on the burned cigarette mass and on the smoking speed. The production of NO was, however, much affected by air oxidation and enhanced by the addition of ascorbic acid. A certain concentration of sodium nitrite (NaNO2) solution, in which nitrite NO2- is assumed as the main origin of the NO, mimicked closely the time course of NO generation resulting from the smoke of one cigarette. The cigarette smoke that was passed through alkaline pyrogallol solution as a deoxidizer; however, it exhibited an unchanged intensity of NO signal throughout the measurement. These results strongly suggest that NO would be gradually reproduced from NO2- in the reductive aqueous solution containing excess Fe(II) through NO2, which is initially formed and is concomitantly oxidized from NO in cigarette smoke.  相似文献   

12.
Recent studies reveal a novel role for hemoglobin as an allosterically regulated nitrite reductase that may mediate nitric oxide (NO)-dependent signaling along the physiological oxygen gradient. Nitrite reacts with deoxyhemoglobin in an allosteric reaction that generates NO and oxidizes deoxyhemoglobin to methemoglobin. NO then reacts at a nearly diffusion-limited rate with deoxyhemoglobin to form iron-nitrosyl-hemoglobin, which to date has been considered a highly stable adduct and, thus, not a source of bioavailable NO. However, under physiological conditions of partial oxygen saturation, nitrite will also react with oxyhemoglobin, and although this complex autocatalytic reaction has been studied for a century, the interaction of the oxy- and deoxy-reactions and the effects on NO disposition have never been explored. We have now characterized the kinetics of hemoglobin oxidation and NO generation at a range of oxygen partial pressures and found that the deoxy-reaction runs in parallel with and partially inhibits the oxy-reaction. In fact, intermediates in the oxy-reaction oxidize the heme iron of iron-nitrosyl-hemoglobin, a product of the deoxy-reaction, which releases NO from the iron-nitrosyl. This oxidative denitrosylation is particularly striking during cycles of hemoglobin deoxygenation and oxygenation in the presence of nitrite. These chemistries may contribute to the oxygen-dependent disposition of nitrite in red cells by limiting oxidative inactivation of nitrite by oxyhemoglobin, promoting nitrite reduction to NO by deoxyhemoglobin, and releasing free NO from iron-nitrosyl-hemoglobin.  相似文献   

13.
The first-derivative EPR spectrum of the active form of Escherichia coli pyruvate formate-lyase shows an asymmetric doublet with partially resolved hyperfine splittings (g = 2.0037). Isotope substitution studies demonstrated couplings of a carbon-centered unpaired electron to a solvent-exchangeable proton (a = 1.5 mT) and to further hydrogen nuclei (a = 0.36 and 0.57 mT). By selective incorporation of unlabelled tyrosine into 2H-labelled enzyme protein, a tyrosyl radical structure has been ruled out. Circumstantial evidence indicates that the organic free radical, which also displays an ultraviolet absorption signal at 365 nm, is located on a standard amino acid residue of the polypeptide chain. EPR signal quantification found a stoichiometry of 1 spin per active site. The formate analogue hypophosphite has been characterized as a specific kcat inhibitor of pyruvate formate-lyase which destroys the enzyme radical. Protein-linked 1-hydroxyethylphosphonate was previously described as the dead-end product after reaction of the analogue with the intermediary acetyl-enzyme form of the catalytic cycle [W. Plaga et al. (1988) Eur. J. Biochem. 178, 445-450]. EPR spectroscopy of this system has now identified the corresponding alpha-phosphoryl radical as a reaction intermediate [g = 2.0032; a(P) = 2.72 mT, a(3H) = 1.96 mT]; it showed a half-life of about 20 min at 0 degrees C. This finding proves that the enzyme radical is a hydrogen-atom-transferring coenzymic element.  相似文献   

14.
Spin-trapping experiments in alkaline aqueous dimethyl sulfoxide (DMSO) solution using sodium 3,5-dibromo-4-nitrosobenzenesulfonate (DBNBS) yielded a strong signal of the sulfur trioxide anion radical adduct. This radical adduct is identical to that obtained by the oxidation of sulfite with horseradish peroxidase/hydrogen peroxide and subsequent spin trapping with DBNBS. This radical adduct is very stable, and satellite peaks of the natural abundance 13C and 33S could be obtained. Apparently, under alkaline conditions DMSO decomposes in air to form the sulfur trioxide anion radical. A comparison with a recent publication shows that this DMSO-derived radical adduct has been misassigned as a uniquely stable spin adduct of superoxide (Ozawa and Hanaki (1986) Biochem. Biophys. Res. Commun. 136, 657-664).  相似文献   

15.
The iron chelating agent desferrioxamine inhibits peroxynitrite-mediated oxidations and attenuates nitric oxide and oxygen radical-dependent oxidative damage both in vitro and in vivo. The mechanism of protection is independent of iron chelation and has remained elusive over the past decade. Herein, stopped-flow studies revealed that desferrioxamine does not react directly with peroxynitrite. However, addition of peroxynitrite to desferrioxamine in both the absence and the presence of physiological concentrations of CO2 and under excess nitrite led to the formation of a one-electron oxidation product, the desferrioxamine nitroxide radical, consistent with desferrioxamine reacting with the peroxynitrite-derived species carbonate (CO3*-) and nitrogen dioxide (*NO2) radicals. Desferrioxamine inhibited peroxynitrite-dependent free radical-mediated processes, including tyrosine dimerization and nitration, oxyhemoglobin oxidation in the presence of CO2, and peroxynitrite plus carbonate-dependent chemiluminescence. The direct two-electron oxidation of glutathione by peroxynitrite was unaffected by desferrioxamine. The reactions of desferrioxamine with CO3*- and *NO2 were unambiguously confirmed by pulse radiolysis studies, which yielded second-order rate constants of 1.7 x 10(9) and 7.6 x 10(6) M(-1) s(-1), respectively. Desferrioxamine also reacts with tyrosyl radicals with k = 6.3 x 10(6) M(-1) s(-1). However, radical/radical combination reactions between tyrosyl radicals or of tyrosyl radical with *NO2 outcompete the reaction with desferrioxamine and computer-assisted simulations indicate that the inhibition of tyrosine oxidation can be fully explained by scavenging of the peroxynitrite-derived radicals. The results shown herein provide an alternative mechanism to account for some of the biochemical and pharmacological actions of desferrioxamine via reactions with CO3*- and *NO2 radicals.  相似文献   

16.
Deoxyhaemocyanin, treated with NO under strictly anaerobic conditions, yielded methaemocyanin and N2O in a fast reaction. In a further slow reaction this methaemocyanin lost its triplet electron paramagnetic resonance (EPR) signal at g = 4 and yielded a nitrosyl derivative with a characteristic g = 2 Cu(II) EPR signal, indicating the binding of a single NO per copper pair. Thus under strictly anaerobic conditions deoxyhaemocyanin and methaemocyanin, treated with NO, gave the same derivative as shown by circular dichroism and EPR spectra. Methaemocyanin yielded, moreover, reversibly a nitrite derivative, characterized by a triplet signal at g = 4 with 7 hyperfine lines.  相似文献   

17.
Acetaminophen, a common analgesic and antipyretic drug, is frequently administered to individuals undergoing anthracycline chemotherapy. Here, the effect of acetaminophen on the metabolism of daunorubicin and doxorubicin by isolated enzymes lactoperoxidase and myeloperoxidase, and by myeloperoxidase-containing human leukemia HL-60 cells was investigated using spectrophotometric and EPR techniques. We report that at pharmacological concentrations acetaminophen strongly stimulates oxidation of the anthracyclines by lactoperoxidase and myeloperoxidase systems, which results in irreversibly altered (colorless) products. The initial rate and efficacy of daunorubicin oxidation depends on pH. While at pH approximately 7 the oxidation is rapid and extensive, almost no oxidation occurs at pH approximately 5. In the absence of daunorubicin, oxidation of acetaminophen by lactoperoxidase/hydrogen peroxide is only weakly dependent on pH, however, at pH 7.4 it strongly depends on [daunorubicin]. Ascorbate and reduced glutathione strongly inhibited oxidation of anthracyclines by lactoperoxidase and HL-60 systems. Using EPR, a daunorubicin-derived radical was detected in a daunorubicin/acetaminophen/peroxidase/hydrogen peroxide system as a narrow single line (0.175 mT) with g = 2.0047. When daunorubicin was omitted, only an acetaminophen-melanin EPR signal was detected (g = 2.0043, line width approximately 0.5 mT). Similar results were obtained with doxorubicin. We suggest that the stimulation by acetaminophen is primarily due to its preferential oxidation by peroxidases to the corresponding phenoxyl radical, which subsequently reacts with daunorubicin (doxorubicin). Because biological properties of oxidatively transformed anthracyclines will certainly be different from those of their parent compounds, the possible acetaminophen-enhanced degradation of the anthracyclines in vivo is likely to interfere with anticancer and/or cardiotoxic activities of these agents.  相似文献   

18.
The formation of radical species during the reaction of ter-tbutyl hydroperoxide and hypochlorous acid has been investigated by spin trapping and chemiluminescence. A superposition of two signals appeared incubating tert-butyl hydroperoxide with hypochlorous acid in the presence of the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN). The first signal (aN = 1.537 mT, aH beta = 0.148 mT) was an oxidation product of POBN caused by the action of hypochlorous acid. The second spin adduct (aN = 1.484 mT, aH beta = 0.233 mT) was derived from a radical species that was formed in the result of reaction of tert-butyl hydroperoxide with hypochlorous acid. Similarly, a superposition of two signals was also obtained using the spin trap N-tert-butyl-alpha-phenylnitrone (PBN). tert-Butyl hydroperoxide was also treated with Fe2+ or Ce4+ in the presence of POBN. Using Fe2+ a spin adduct with a N = 1.633 mT and aH beta = 0.276 mT was observed. The major spin adduct formed with Ce4+ was characterised by a N = 1.480 mT and aH beta = 0.233 mT. The reaction of tert-butyl hydroperoxide with hypochlorous acid was accompanied by a light emission, that time profile and intensity were identical to those emission using Ce4+. The addition of Fe2+ to tert-butyl hydroperoxide yielded a much smaller chemiluminescence. Thus, tert-butyl hydroperoxide yielded in its reaction with hypochlorous acid or Ce4+ the same spin adduct and the same luminescence profile. Because Ce4+ is known to oxidize organic hydroperoxides to peroxyl radical species, it can be concluded that a similar reaction takes place in the case of hypochlorous acid.  相似文献   

19.
The primary product of the interaction between nitric oxide (NO) and superoxide () is peroxynitrite (ONOO-), which is capable of either oxidizing or nitrating various biological substrates. However, it has been shown that excess NO or can further react with ONOO- to form species which mediate nitrosation. Subsequently, the controlled equilibrium between nitrosative and oxidative chemistry is critically dependent on the flux of NO and. Since ONOO- reacts not only with NO and but also with CO2, the effects of bicarbonate () on the biphasic oxidation profile of dihydrorhodamine-123 (DHR) and on the nitrosation of both 2,3-diaminonaphthalene and reduced glutathione were examined. Nitric oxide and were formed with DEA/NO [NaEt2NN(O)NO] and xanthine oxidase, respectively. The presence of did not alter either the oxidation profile of DHR with varying radical concentrations or the affinity of DHR for the oxidative species. This suggests that the presence of CO2 does not affect the scavenging of ONOO- by either NO or. However, an increase in the rate of DHR oxidation by ONOO- in the presence of suggests that a CO2-ONOO- adduct does play a role in the interaction of NO or with a product derived from ONOO-. Further examination of the chemistry revealed that the intermediate that reacts with NO is neither ONOO- nor cis-HOONO. It was concluded that NO reacts with both trans-HOONO and a CO2 adduct of ONOO- to form nitrosating species which have similar oxidation chemistry and reactivity with and NO.  相似文献   

20.
Quantitative kinetic models have been developed for the reaction between peroxynitrite and membrane lipids in vesicles and for transmembrane oxidation of reactants located within their inner aqueous cores. The models were used to analyze TBARS formation and oxidation of entrapped Fe(CN)(6)(4)(-) ion in egg lecithin liposomes and several artificial vesicles. The analyses indicate that permeation of the bilayers by ONOOH and NO(2)(*), a radical formed by homolysis of the ONOOH bond, is unusually rapid but that permeation by ONOO(-) and CO(3)(*)(-), a radical formed when CO(2) is present, is negligible. Bicarbonate protects the vesicles against both membrane and Fe(CN)(6)(4)(-) oxidation by rapid competitive CO(2)-catalyzed isomerization of ONOOH to NO(3)(-); this effect is partially reversed by addition of nitrite ion, which reacts with CO(3)(*)(-) to generate additional NO(2)(*). Under medium conditions mimicking the physiological milieu, a significant fraction of the oxidants escape to inflict damage upon the vesicular assemblies. Rate constants for several elementary reaction steps, including transmembrane diffusion rates for ONOOH and NO(2)(*), were estimated from the bicarbonate dependence of the oxidative reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号