首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT.   Studies comparing numbers of nocturnal migrants in flight with numbers of migrants at stopover sites have produced equivocal results. In 2003, we compared numbers of nocturnal migrants detected by radar to numbers of passerines observed at the Atlantic Bird Observatory in southwestern Nova Scotia, Canada. Numbers of nocturnal migrants detected by radar were positively correlated with numbers of migrants as determined by mist-netting, censuses, and daily estimated totals (daily estimates of birds present based netting and census results and casual observations) the following day. On nights with winds favorable for migration (tailwinds), the peak correlation between ground counts and radar counts the night before occurred just after sunset. On nights with unfavorable winds (headwinds), the correlation increased through the night, with a peak just before sunrise. The patterns of correlation are consistent with a scenario where birds accumulate at the coastline during periods of unfavorable wind, likely because they are not willing to cross a major ecological barrier, the Gulf of Maine. On nights with favorable winds, many birds departed, but some, possibly after testing wind conditions, apparently decided not to cross the Gulf of Maine and returned. Our results suggest that combining data collected using different methods to generate a daily estimated total provides the best estimate of the number of migrants present at a stopover site. Simultaneous studies at multiple locations where different census methods are used, making more effective use of temporal data (both from radar and diurnal counts), will more clearly elucidate patterns of flight behavior by migratory songbirds and the relationship between ground counts and counts of birds aloft.  相似文献   

2.
Many bird species call during migration, but call rates not necessarily reflect migration intensity. They rather seem to increase under deteriorating flight conditions. Often, nocturnal mass collisions at illuminated structures coincide with such conditions and are accompanied with high call rates of migrants. Thus, call rates could act as an indicator for situations with high collision risk for birds namely at offshore sites with hardly any alternatives for landing. In the face of increasing numbers of offshore wind farms knowledge about the environmental conditions in which maximum call rates occur, is needed for mitigation measures. In this first long‐term study at an offshore site in the southern North Sea we investigated the effect of weather on the frequency of flight calls of three thrush‐species at an illuminated platform. Flight calls were registered automatically during three autumn migration seasons. Besides generally higher call rates from 5 to 2 h before until 6 h after midnight, call rates increased with tailwinds, a change of the tailwind component during the first part of the night, offshore crosswinds and very high humidity. A monitoring programme is suggested that could help to reduce mass mortalities at illuminated structures.  相似文献   

3.
Nocturnally migrating birds, particularly passerines, are known to be vulnerable to collision with man‐made structures such as buildings, towers or offshore platforms, yet information with respect to wind farms is ambiguous. We recorded bird flight intensities using radar during autumn migration at four wind farms situated within a major migration flyway in northern Germany and simultaneously conducted systematic searches for collision fatalities at the same sites. We found that migration traffic rates at rotor height estimated by radar observations were significantly higher during the night, yet strictly nocturnal migrants constituted only 8.6% of all fatalities at the wind farms. In contrast to the situation at other vertical structures, nocturnal migrants do not have a higher risk of collision with wind energy facilities than do diurnally active species, but rather appear to circumvent collision more effectively.  相似文献   

4.
Several studies have found that the peak in bird density in the atmosphere during nocturnal migration occurs before midnight, while the peak in vocalizations from migrating birds occurs after midnight, in the hours just before dawn. In a recent study, the patterns of calling from a single species of migrating birds correlated well with the patterns of density estimates of migrating birds. We test the null hypothesis that the patterns of reflectivity measurements and number of vocalizations during nocturnal migration are not related. We sampled radar data and nocturnal flight calls during spring and fall 2000 in northwestern South Carolina and southeastern New York. We analyzed changes in the hour-to-hour patterns of bird density and vocalizations for 556 hours on 58 nights. We also analyzed the night-to-night changes in the patterns of peak hour bird density and peak hour of vocalizations on 32 nights. We found that most of the hour-to-hour and night-to-night patterns of density and vocalization counts are significantly related and reject the null hypothesis. However, despite significant relationships between reflectivity measurements and vocalization counts, a great deal of variation in vocalization counts remains unexplained. These results suggest that factors other than bird density are responsible for the variation in vocalizing by migrating birds.  相似文献   

5.
Located at the shortest overland route between the Gulf of Mexico and the Pacific Ocean, Mexico's Tehuantepec Isthmus is a globally important migratory corridor for many terrestrial bird species. The Pacific coast of the Isthmus also contains a significant wetland complex that supports large multi‐species aggregations of non‐breeding waterbirds during the boreal winter. In recent years, extensive wind energy development has occurred in the plains bordering these wetlands, directly along the migratory flyway. Using recent studies of movement patterns of three marine‐associated bird species – reddish egrets Egretta rufescens, brown pelicans Pelecanus occidentalis, and red knots Calidris canutus – from the northern Gulf of Mexico, we assess the use of the isthmus as a migratory corridor. Our data provide evidence that marine birds from the Gulf region regularly overwinter along the Pacific coast of Mexico and use the isthmus as a migratory corridor, creating the potential for interaction with terrestrial wind farms during non‐breeding. This study is the first to describe migration by marine‐associated bird species between the Gulf of Mexico and Pacific coast. These data contribute new information toward ongoing efforts to understand the complex migration patterns of mobile marine species, with the goal of informing integrated conservation efforts for species whose year‐round habitat needs cross ecoregional and geopolitical boundaries.  相似文献   

6.
The Gulf of Mexico is a conspicuous feature of the Neotropical–Nearctic bird migration system. Traveling long distances across ecological barriers comes with considerable risks, and mortality associated with intercontinental migration may be substantial, including that caused by storms or other adverse weather events. However, little, if anything, is known about how migratory birds respond to disturbance‐induced changes in stopover habitat. Isolated, forested cheniere habitat along the northern coast of the Gulf of Mexico often concentrate migrants, during weather conditions unfavorable for northward movement or when birds are energetically stressed. We expected hurricane induced degradation of this habitat to negatively affect the abundance, propensity to stopover, and fueling trends of songbirds that stopover in coastal habitat. We used spring banding data collected in coastal Louisiana to compare migrant abundance and fueling trends before (1993–1996 and 1998–2005) and after hurricanes Rita (2006) and Ike (2009). We also characterized changes in vegetative structure before (1995) and after (2010) the hurricanes. The hurricanes caused dramatic changes to the vegetative structure, which likely decreased resources. Surprisingly, abundance, propensity to stopover, and fueling trends of most migrant species were not influenced by hurricane disturbance. Our results suggest that: 1) the function of chenieres as a refuge for migrants after completing a trans‐Gulf flight may not have changed despite significant changes to habitat and decreases in resource availability, and 2) that most migrants may be able to cope with habitat disturbance during stopover. The fact that migrants use disturbed habitat points to their conservation value along the northern coast of the Gulf of Mexico.  相似文献   

7.
Summary Length of stopover and rate of weight gain (fat deposition) were studied in several species of passerine birds that stopped in southwestern Louisiana along the northern coast of the Gulf of Mexico after a trans-Gulf flight. Fatdepleted birds were more common among the birds that arrived at our study site in southwest Louisiana, though variability characterized our samples. Migrants that landed after encountering opposing winds or rain over the northern Gulf of Mexico were, on average, fatter than migrants that landed when weather was favorable for continued migration. Some of the variation in the energetic condition of arrivals may be explained by the location where migrants initiated crossings. Our simulation of flight over the Gulf of Mexico showed that with following winds a warbler can cross the Gulf of Mexico from Yucatan with fat reserves to spare, and stronger tailwinds make flights from as far south as Honduras energetically permissible. The length of stay after a trans-Gulf flight was related to the extent of fat-depletion upon arrival: lean birds stayed longer than fat migrants. Migrants stopped over for 1–7 days and replenished energy reserves at rates that varied from 0.19 g/d for Hooded Warblers (Wilsonia citrina) to 0.87 g/d for Ovenbirds (Seiurus aurocapillus). Within each species, most individuals gained weight at a rapid rate, though a few individuals lost or maintained weight during their stay.  相似文献   

8.
2002年9月16日—11月28日和2003年9月9日—11月26日,在云南南涧凤凰山共网捕秋季迁移鸟176种6677只,分属13目29科。凤凰山鸟类夜间迁移时间开始于8月上旬,至11月中旬结束,可分为开始期、高峰期和结束期。高峰期出现于9月中旬—10月上旬,迁移波峰出现在10月初;高峰期间受圆月影响,中间出现2个网捕低谷。候鸟夜间迁移在日落后约1小时开始,在20:30—24:00出现第1个迁移高峰;随后鸟类迁移数量逐渐减少;到次日4:00左右又开始增多,出现当夜的第2个高峰;在凌晨5:30左右再度减少直到日出前为止。白天迁移主要出现在迁移后期,开始于10月中旬左右,10月下旬、11月中旬达到白天迁移高峰,随后逐渐减少,一直持续到11月下旬,1甚至到12月上旬。白昼迁移鸟在日出前约1小时开始迁过,8:30左右达到白昼迁移高峰,11:00后停止。凤凰山秋季迁移鸟的迁徙期持续约100天。夜间迁徙鸟在西南风无月有雾之夜在22:00过境高峰后,还会在午夜、凌晨和黎明前出现另外3个过境高峰,而其他天气仅在22:00出现1次过境高峰。  相似文献   

9.
We examined the relationship between the longitude of peak arrival of trans-Gulf migrants on the northern coast of the Gulf of Mexico in spring and wind trajectories over the Gulf at three different altitudes (500, 1,500, and 2,500 m above ground level). We used data from 10 WSR-88D radars (weather surveillance radar-1988-Doppler) from Brownsville, Texas, to Key West, Florida, to record the time and longitude of peak arrival on the northern Gulf coast for four spring migrations (2001–2004). We used the National Oceanic Atmospheric Administration Air Resources Laboratory HYSPLIT transport and dispersion model at the READY Web site to generate backward, 24-h atmospheric trajectories based on archived atmospheric data for each trans-Gulf flight. The trajectories began at the geographic location where radar indicated the greatest concentrations of arriving migrants. Although the longitude of peak arrival varied, peak densities of most trans-Gulf migrants arrived on the northern coast near longitude 95°W. Regression analyses showed that the relationship between the longitude of peak trans-Gulf arrival and the direction of atmospheric trajectory was significant but weak at the 500-m level, where few migrants occurred, and was insignificant for the 1,500- and 2,500-m altitudes, where migrant densities were greater. We conclude that winds aloft over the Gulf have little influence on the longitude of peak trans-Gulf arrival on the northern coast of the Gulf of Mexico, and we speculate that the arrival pattern may reflect the trans-Gulf migration pathways that evolved during the Last Glacial Maximum.  相似文献   

10.
Many birds and mammals produce distress calls when captured. Bats often approach speakers playing conspecific distress calls, which has led to the hypothesis that bat distress calls promote cooperative mobbing. An alternative explanation is that approaching bats are selfishly assessing predation risk. Previous playback studies on bat distress calls involved species with highly maneuverable flight, capable of making close passes and tight circles around speakers, which can look like mobbing. We broadcast distress calls recorded from the velvety free-tailed bat, Molossus molossus, a fast-flying aerial-hawker with relatively poor maneuverability. Based on their flight behavior, we predicted that, in response to distress call playbacks, M. molossus would make individual passing inspection flights but would not approach in groups or approach within a meter of the distress call source. By recording responses via ultrasonic recording and infrared video, we found that M. molossus, and to a lesser extent Saccopteryx bilineata, made more flight passes during distress call playbacks compared to noise. However, only the more maneuverable S. bilineata made close approaches to the speaker, and we found no evidence of mobbing in groups. Instead, our findings are consistent with the hypothesis that single bats approached distress calls simply to investigate the situation. These results suggest that approaches by bats to distress calls should not suffice as clear evidence for mobbing.  相似文献   

11.
Assessing the impacts of avian collisions with wind turbines requires reliable estimates of avian flight intensities and altitudes, to enable accurate estimation of collision rates, avoidance rates and related effects on populations. At sea, obtaining such estimates visually is limited not only by weather conditions but, more importantly, because a high proportion of birds fly at night and at heights above the range of visual observation. We used vertical radar with automated bird‐tracking software to overcome these limitations and obtain data on the magnitude, timing and altitude of local bird movements and seasonal migration measured continuously at a Dutch offshore wind farm. An estimated 1.6 million radar echoes representing individual birds or flocks were recorded crossing the wind farm annually at altitudes between 25 and 115 m (the rotor‐swept zone). The majority of these fluxes consisted of gull species during the day and migrating passerines at night. We demonstrate daily, monthly and seasonal patterns in fluxes at rotor heights and the influence of wind direction on flight intensity. These data are among the first to show the magnitude and variation of low‐altitude flight activity across the North Sea, and are valuable for assessing the consequences of developments such as offshore wind farms for birds.  相似文献   

12.
辽宁老铁山雀形目鸟类秋季迁徙初探   总被引:1,自引:0,他引:1  
2000~2004年秋在辽宁旅顺老铁山自然保护区,通过鸟类环志和直接观察的方法,对该地区雀形目(Passeriformes)鸟类秋季迁徙规律进行了研究。5年共环志11 040只雀形目鸟类,发现8种保护区新记录种。结果表明,鸟类迁徙高峰大都集中在10月中下旬;气候条件与鸟类迁徙关系密切;不同年份优势种及种群数量均不同;鸟类的迁徙具有一定的顺序性和集群现象,但不同种类迁徙的种群大小又有差别;2004年雀形目鸟类的种类和数量都明显少于前4年,略有下降趋势。  相似文献   

13.
The Mediterranean Sea is one of the largest obstacles that has to be crossed by Palearctic birds migrating from Europe to Africa; it thus offers a good opportunity to study variations in migratory behaviour of birds facing a major ecological barrier. Using a passive infrared device, the flight directions of nocturnal migrants were determined and flight altitudes estimated at ten sites along the French and Spanish coast of the Mediterranean Sea in September and October 1995. The variation of migratory intensity, flight direction and altitude in the course of the night was examined. The highest density of migration was recorded within the first hour after sunset, followed by relatively high densities over the next several hours, and a progressive decrease in the last third of the night. In spite of broad variation in the course of the coastline relative to the basic directions of migration and specific reactions of the migrants to the local conditions, a decrease in seaward migration corresponding to an increase in landward migration from the first to the second half of the night was a general feature at nearly all sites. The results suggest a shift in the motivation of the birds depending on the time of arrival in a coastal area, leading to an adjustment in the flight behaviour of nocturnal migrants.  相似文献   

14.
Migration and orientation of passerine night migrants in northeast England   总被引:1,自引:0,他引:1  
Evening departures of passerine migrants were watched by radar in northeast England on 193 nights in the months of August to November 1961 to 1963. It was found that migrants were not departing each night on the same heading, from which they were drifted passively by the wind, but rather were departing on similar tracks night after night. On ten nights they maintained their tracks even when the upper-air wind changed during the night. This indicates that migrants can, at least sometimes, compensate completely for the effect of the wind and fly on a fixed track, but calculations show that there are certain wind conditions when this becomes impossible.
Movements were grouped according to the months in which they took place and the tracks which they followed, and then related to variousweather factors. Migration was seen most frequently with light winds favourable to the birds'track, after a marked drop in temperature (in October/November, but not August/September), and withabsence of cloud. However, it was also recorded on 17 nights when the cloud cover was complete.
The departures of small passerines from Britain in August and September follow tracks east of south, yet the same birds reach western Iberia later in their journey. It is suggested that the direction of departure from Britain has been evolved to take advantage of the prevailing (westerly) upper-air winds. Certain warblers leave their breeding areas in Northumberland without laying down much migratory fat, yet the same species make long flights non-stop (across the Mediterranean and Sahara) later in their migrations. These migrants change froman insect to a fruit diet in autumn, and can presumably IaKdown fat more quickly the further south they travel in Europe, as the soft fruit ripens earlier in southern areas.  相似文献   

15.
Nocturnal autumn bird migration at Falsterbo, South Sweden   总被引:3,自引:0,他引:3  
We investigated the patterns of nocturnal bird migration in autumn 1998 at a coastal site on the Falsterbo peninsula in south-western Sweden, by means of a passive infrared device. In total 17 411 flight paths, including track direction and altitude, of migrating birds were recorded for 68 nights from August to October. Mean migratory traffic rate per night varied between 6 and 6618 birds km−1 h−1, with an average of 1319 birds km−1 h−1. Migration at Falsterbo showed a similar seasonal pattern to that reported for central Europe, with pronounced peaks of migration and intermittent periods with relatively low migratory intensities. Weather factors explained two thirds of the variance in the intensity of bird migration. During nights with intense migration, associated with weak winds, the mean track direction was close to that in central western Europe (225°). Birds usually maintained a constant heading independent of wind directions and, in consequence, were drifted by the wind. The mean orientation clearly differed from that of the nearest coastline, suggesting that the birds did not use the topography below to compensate for wind drift.  相似文献   

16.
Quantifying the timing and intensity of migratory movements is imperative for understanding impacts of changing landscapes and climates on migratory bird populations. Billions of birds migrate in the Western Hemisphere, but accurately estimating the population size of one migratory species, let alone hundreds, presents numerous obstacles. Here, we quantify the timing, intensity, and distribution of bird migration through one of the largest migration corridors in the Western Hemisphere, the Gulf of Mexico (the Gulf). We further assess whether there have been changes in migration timing or intensity through the Gulf. To achieve this, we integrate citizen science (eBird) observations with 21 years of weather surveillance radar data (1995–2015). We predicted no change in migration timing and a decline in migration intensity across the time series. We estimate that an average of 2.1 billion birds pass through this region each spring en route to Nearctic breeding grounds. Annually, half of these individuals pass through the region in just 18 days, between April 19 and May 7. The western region of the Gulf showed a mean rate of passage 5.4 times higher than the central and eastern regions. We did not detect an overall change in the annual numbers of migrants (2007–2015) or the annual timing of peak migration (1995–2015). However, we found that the earliest seasonal movements through the region occurred significantly earlier over time (1.6 days decade?1). Additionally, body mass and migration distance explained the magnitude of phenological changes, with the most rapid advances occurring with an assemblage of larger‐bodied shorter‐distance migrants. Our results provide baseline information that can be used to advance our understanding of the developing implications of climate change, urbanization, and energy development for migratory bird populations in North America.  相似文献   

17.
Many species of birds that normally migrate during the night have been observed engaging in so‐called morning flights during the early morning. The results of previous studies have supported the hypothesis that one function of morning flights is to compensate for wind drift that birds experienced during the night. Our objective was to further explore this hypothesis in a unique geographic context. We determined the orientation of morning flights along the southern shore of Lake Erie's western basin during the spring migrations of 2016 and 2017. This orientation was then compared to the observed orientation of nocturnal migration. Additionally, the orientation of the birds engaged in morning flights following nights with drifting winds was compared to that of birds following nights with non‐drifting winds. The morning flights of most birds at our observation site were oriented to the west‐northwest, following the southern coast of Lake Erie. Given that nocturnal migration was oriented generally east of north, the orientation of morning flight necessarily reflected compensation for accumulated, seasonal wind drift resulting from prevailingly westerly winds. However, the orientation of morning flights was similar following nights with drifting and non‐drifting winds, suggesting that birds on any given morning were not necessarily re‐orienting as an immediate response to drift that occurred the previous night. Given the topographical characteristics of our observation area, the west‐northwest movement of birds in our study is likely best explained as a more complex interaction that could include some combination of compensation for wind drift, a search for suitable stopover habitat, flying in a direction that minimizes any loss in progressing northward toward the migratory goal, and avoidance of a lake crossing.  相似文献   

18.
By altering its flight altitude, a bird can change the atmospheric conditions it experiences during migration. Although many factors may influence a bird's choice of altitude, wind is generally accepted as being the most influential. However, the influence of wind is not clearly understood, particularly outside the trade‐wind zone, and other factors may play a role. We used operational weather radar to measure the flight altitudes of nocturnally migrating birds during spring and autumn in the Netherlands. We first assessed whether the nocturnal altitudinal distribution of proportional bird density could be explained by the vertical distribution of wind support using three different methods. We then used generalized additive models to assess which atmospheric variables, in addition to altitude, best explained variability in proportional bird density per altitudinal layer each night. Migrants generally remained at low altitudes, and flight altitude explained 52 and 73% of the observed variability in proportional bird density in spring and autumn, respectively. Overall, there were weak correlations between altitudinal distributions of wind support and proportional bird density. Improving tailwind support with height increased the probability of birds climbing to higher altitude, but when birds did fly higher than normal, they generally concentrated around the lowest altitude with acceptable wind conditions. The generalized additive model analysis also indicated an influence of temperature on flight altitudes, suggesting that birds avoided colder layers. These findings suggested that birds increased flight altitudes to seek out more supportive winds when wind conditions near the surface were prohibitive. Thus, birds did not select flight altitudes only to optimize wind support. Rather, they preferred to fly at low altitudes unless wind conditions there were unsupportive of migration. Overall, flight altitudes of birds in relation to environmental conditions appear to reflect a balance between different adaptive pressures.  相似文献   

19.
Collisions with wind turbines are an increasing conservation concern for migratory birds that already face many threats. Existing collision‐risk models take into account parameters of wind turbines and bird flight behavior to estimate collision probability and mortality rates. Two behavioral characteristics these models require are the proportion of birds flying at the height of the rotor swept‐zone and the flight speed of birds passing through the rotor swept‐zone. In recent studies, investigators have measured flight height and flight speed of migrating birds using fixed‐beam radar and thermal imaging. These techniques work well for fixed areas where migrants commonly pass over, but they cannot readily provide species‐specific information. We measured flight heights of a nesting shorebird, the federally threatened Piping Plover (Charadrius melodus), using optical range finding and measured flight speed using videography. Several single‐turbine wind projects have been proposed for the Atlantic coast of the United States where they may pose a potential threat to these plovers. We studied Piping Plovers in New Jersey and Massachusetts during the breeding seasons of 2012 and 2013. Measured flight heights ranged from 0.7 to 10.5 m with a mean of 2.6 m (N = 19). Concurrent visually estimated flight heights were all within 2 m of measured heights and most within 1 m. In separate surveys, average visually estimated flight height was 2.6 m (N = 1674) and ranged from 0.25 m to 40 m. Average calculated flight speed was 9.30 m/s (N = 17). Optical range finding was challenging, but provided a useful way to calibrate visual estimates where frames of reference were lacking in the environment. Our techniques provide comparatively inexpensive, replicable procedures for estimating turbine collision‐risk parameters where the focus is on discrete nesting areas of specific species where birds follow predictable flight paths.  相似文献   

20.
The daily pattern of autumn bird migration in the northern Sahara   总被引:2,自引:0,他引:2  
The temporal pattern of migration by passerine birds during the night, and their arrival during the day at the Egyptian coast and in the northern Sahara Desert was investigated. The mean direction of nocturnal migration at the coast was south-southeast, while at all desert sites it was south-southwest.
Birds arrived at the Egyptian coast only during the second half of the night which is explained by the fact that no birds could have taken off from the Mediterranean Sea. At least some of the birds landed at the coast where they spent the day before taking off shortly after sunset. These birds passed the desert sites at the expected time of day assuming a ground speed of 18 m per second. However, the origin of the birds passing the desert sites early at night is unclear. They must either have spent the day in the desert north of the study sites or they had overflown the Egyptian coast in the afternoon without landing.
The landing of birds during the day at the desert sites was bimodal. This pattern of arrival is explained either by some birds having landed at the Egyptian coast in the early morning before continuing, or by deteriorating conditions later in the day during flight or when resting in the desert, that obliged them to seek shelter at the desert sites.
A correlation between the number of migrants observed during the night and the number of resting birds in the desert on the following day suggests that an unknown proportion of birds might regularly use an intermittent migratory strategy that includes rest periods by day when crossing the desert, whereas others might adapt a non-stop migratory strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号