首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sterols of four species of Pentatomomorpha—Oncopeltus fasciatus (Dallas), Nezara viridula (L.), Dysdercus cingulatus (F.), and Podisus maculiventris (Say)—and threé species of Cimicomorpha—Rhodnius prolixus Stal, Arilus cristatus (L), and Cimex lectularius (L.)—were isolated and examined in order to compare neutral sterol utilization and content with the known ecdysteroids of these species. In the phytophagous Pentatomomorpha, O. fasciatus, N. viridula, and D. cingulatus, the low content of cholesterol and the high content of C28 and C29 phytosterols (< 1% and > 99% of the tissue sterols, respectively) indicated that these species are unable to dealkylate the C-24 position of sterols. These insects appear to have adapted to the challenge of both insufficient dietary cholesterol and inability to dealkylate phytosterols by evolving the ability to produce a C28 ecdysteroid (makisterone A). The secondarily predacious P. maculiventris has adequate cholesterol available for C27 ecdysteroid production, but appears to have retained the ecdysteroid biosynthetic pathways of its phytophagous ancestors because it produces a C28 ecdysteroid. Cholesterol was the major sterol of each of the three species of Cimicomorpha, and these insects are only able to produce C27 ecdysteroids.  相似文献   

2.
Last-stage nymphs of the broad-headed bug, Megalotomus quinquespinosus contain the C28 ecdysteroid makisterone A as their major ecdysteroid. No ecdysone or 20-hydroxyecdysone was detected in whole body extracts analyzed by high performance liquid chromatography and radioimmune assay. Analyses of the neutral sterols of this phytophagous hemipteran revealed that the sterol composition of the nymphs was highly reflective of their dietary sterols. The most abundant nymphal sterols were sitosterol (46.6%), Δ7-stigmastenol (13.8%) and spinasterol (13.4%). Cholesterol accounted for only 0.2% of the total sterols and indicates that this species is incapable of converting 24-alkyl sterols to cholesterol.  相似文献   

3.
The sterols of six species of Hymenoptera including two phytophagous species (Apis mellifera and Megachile rotundata) and four omnivorous species (Dolichovespula maculata, Vespula maculifrons, Formica exsectoides, and Solenopsis invicta) were isolated and identified. The two phytophagous species of bees have in common relatively high levels of 24-methylenecholesterol and very low levels of cholesterol (<1% of total sterols). The isofucosterol content (40.7%) of M. rotundata was nearly three times that of A. mellifera, but overall utilization of dietary sterols in the two species is similar in that neither is able to convert C28 and C29 phytosterols to cholesterol. All four omnivorous species are predatory to some extent, and the fact that their usual dietary sterols include high levels of chlosterol is reflected in the sterols isolated from these species, which contain 45–81% cholesterol. All six hymenopteran species appear to utilize dietary sterols for structural needs with little or no metabolic modification of the steroid structure.  相似文献   

4.
C27, C28 and C29 sterols have been isolated from a Leptosphaeria typhae culture grown in vitro in light on a synthetic medium. These products were characterized by GLC and MS. Saturated and mono-, di- and tri-unsaturated sterols are present, both free and esterified. There are significant differences between these sterols and those in the same fungus grown on “oat water”. Unexpectedly, cholesterol was detected in the latter case.  相似文献   

5.
The sterol compositions of 14 species of marine diatoms were determined by gas chromatography and gas chromatography-mass spectrometry. A variety of sterol profiles were found. The sterols 24-methylcholesta-5,22E-dien-3β-ol, cholest-5-en-3β-ol, and 24-methylcholesta-5,24(28)-dien-3β-ol, previously described as the most common sterols found in diatoms, were major sterols in only a few of the species. In light of this and other recent data, it is clear that these three sterols are not typical constituents of many diatom species. Most of the centric species examined had 24-methylcholesta-5,24(28)-dien-3β-ol and 24-methylcholest-5-en-3β-ol as two of their major sterols. The exception was Rhizosolenia setigera, which possessed cholesta-5,24-dien-3β-ol as its single major sterol. In contrast to the centric species, the pennate diatoms examined did not have any particular sterols common to most species. Minor levels ofΔ7-sterols, rarely found in large amounts in diatoms, were found in four species. C29sterols were found in many species; seven contained 24-ethylcholest-5-en-3β-ol and three contained 24-ethylcholesta-5,22E-dien-3β-ol, reinforcing previous suggestions that C29 sterols are not restricted to higher plants and macroalgae. 24-Ethylcholesta-5,22E-dien-3β-ol may prove to be useful for taxonomy of the genus Amphora and the order Thalassiophysales. A major sterol of Fragilaria pinnata was the uncommon algal sterol 23,24-dimethylcholesta-5,22E-dien-3β-ol. Cholesta-5,24-dien-3β-ol was the only sterol found in the culture of Nitzschia closterium. This differed from previous reports of 24-methylcholesta-5,22E-dien-3β-ol as the single major sterol in N. closterium. Two C28 sterols possessing an unusual side chain were found in Thalassi-onema nitzschioides, a C28:2 sterol (16%) and a C28:1 sterol in lower abundance (2.5%), which may be 23-methylcholesta-5,22E-dien-3β-ol and 23-methyl-5α-cholest-22E-en-3β-ol, respectively. The species Cylindrotheca fusiformis, T. nitzschioides, and Skeletonema sp. may be useful as direct sources of cholesterol in mariculture feeds due to their moderate to high content of this sterol.  相似文献   

6.
Using high performance liquid chromatography in conjunction with radioimmunoassay and mass spectrometry, the major ecdysteroid of the solitary cactus bee, Diadasia rinconis, was determined to be 20-hydroxyecdysone, with lesser amounts of makisterone A. Another 28-carbon ecdysteroid thought to be the 24-epimer of makisterone A was also detected. The neutral sterols of Diadasia consisted primarily of 24-methylenecholesterol (92.2%) with lesser amounts of other C28 and C29 sterols. Cholesterol accounted for less than 0.1% of the total tissue sterols. The occurrence of 20-hydroxyecdysone in a phytophagous hymenopteran is discussed in relation to the low level of cholesterol encountered. © 1993 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    7.
    The sterol fraction was examined from cultures of the filamentous red alga Goniotrichum elegans. Brassicasterol accounted for nearly half of the total sterol and was accompanied by cholesterol (24%) as well as a number of minor components. This is the first record of brassicasterol as a major sterol in the Rhodophycophyta. The occurrence of this C28 major sterol may be of taxonomic importance in determining the relationship of the Goniotrichales to the other red algae of which have C27 major sterols.  相似文献   

    8.
    The dinoflagellates Amphidinium carterae and Amphidinium corpulentum have been previously characterized as having Δ8(14)-nuclear unsaturated 4α-methyl-5α-cholest-8(14)-en-3β-ol (C28:1) and 4α-methyl-5α-ergosta-8(14),24(28)-dien-3β-ol (amphisterol; C29:2) as predominant sterols, where they comprise approximately 80% of the total sterol composition. These two sterols have hence been considered as possible major sterol biomarkers for the genus. Here, we have examined the sterols of four recently identified species of Amphidinium (Amphidinium fijiense, Amphidinium magnum, Amphidinium theodori, and Amphidinium tomasii) that are closely related to Amphidinium operculatum as part of what is termed the Operculatum Clade to show that each species has its sterol composition dominated by the common dinoflagellate sterol cholesterol (cholest-5-en-3β-ol; C27:1), which is found in many other dinoflagellate genera, rather than Δ8(14) sterols. While the Δ8(14) sterols 4α-methyl-5α-cholest-8(14)-en-3β-ol and 4α,23,24-trimethyl-5α-cholest-8(14),22E-dien-3β-ol (C30:2) were present as minor sterols along with another common dinoflagellate sterol, 4α,23,24-trimethyl-5α-cholest-22E-en-3β-ol (dinosterol; C30:1), in some of these four species, amphisterol was not conclusively observed. From a chemotaxonomic perspective, while this does reinforce the genus Amphidinium's ability to produce Δ8(14) sterols, albeit here as minor sterols, these results demonstrate that caution should be used when considering Δ8(14) sterols, especially amphisterol, as Amphidinium-specific biomarkers within these species where cholesterol is the predominant sterol.  相似文献   

    9.
    Summary A multi-cup sediment trap was deployed at 250m in the shelf area off Kapp Norvegia, Weddell Sea (630 m water depth) to determine the relative importance of water mass advection, sea ice movement, phytoplankton biomass and plankton feeding. Short-term fluctuations in sedimentation were determined using a sampling frequency of 2.7 days over 54 days during January and February 1988. Three periods of enhanced sedimentation were associated with water mass exchange, settling of diatoms following break-up of ice cover and release of fecal matter by krill feeding on particulate matter derived from phytoplankton and ice algae. An initial sedimentation pulse (28 Jan) was mainly due to sinking pelagic diatoms and krill fecal strings containing algae released from sea ice passing over the trap position. The 13C-composition of the sedimented organic carbon was about-24. The isotope ratio decreased sharply by about 5.5 at the end of the first pulse indicating the source of sinking matter becoming pelagic diatoms of the retreating ice-edge. At this time the diatom Corethron criophilum contributed a very high proportion of the organic flux causing an increase of the opal/Corg ratios. The second pulse (6 Feb) was due to empty diatom frustules, minipellets and small planktonic aggregates. Much of the organic carbon was transported by round fecal pellets. During the third pulse (14 Feb), round fecal pellets transported even more; the percentage of C. criophilum to the diatom organic carbon flux was more than 80% (>2mg C m–2 day–1).Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

    10.
    Lipid composition and hydrocarbon structure of two colonial green algae of the genus Botryococcus, i.e., a museum strain and a field sample collected for the first time from Lake Shira (Khakasia, Siberia), have been compared. Polar lipids, diacylglycerols, alcohols, triacylglycerols, sterols, sterol esters, free fatty acids and hydrocarbons have been identified among lipids in the laboratory culture. The dominant fraction in the museum strain was formed by polar lipids (up to 50% of the lipids) made up of fatty acids from C12 to C24. Palmitic, oleic, C16 - C18 dienoic and trienoic acids were the main fatty acids of the museum strain. Aliphatic hydrocarbons were found in the lipid of the museum strain. However, these amounted maximally to about 1% of the dry biomass at the end of exponential growth phase. The qualitative and quantitative compositions of FAs and hydrocarbons of the museum strain of Botryococcus, (registered at the Cambridge collection as Botryococcus braunii Kutz No LB 807/1 Droop 1950 H-252) differed from those of the Botryococcus strain described in the literature as Botryococcus braunii. The Botryococcus sp. found in Lake Shira is characterized by a higher lipid content (<40% of the dry weight). Polar lipids, sterols, triacylglycerols, free fatty acids and hydrocarbons have been identified among lipids in the field sample. The main lipids in this sample were dienes and trienes (hydrocarbons <60% of total lipid). Monounsaturated and very long chain monounsaturated fatty acids, including C28:1 and C32:1 acids, were identified in the Botryococcus found in Lake Shira. The chemo-taxonomic criteria allow us to unequivocally characterize the organism collected from Lake Shira as Botryococcus braunii, race A.  相似文献   

    11.
    The longitudinal distribution and seasonal fluctuation of phytoplankton communities was studied along the middle to lower part of a regulated river system (Nakdong River, Korea). Phytoplankton biomass decreased sharply in the middle part of the river (182 km upward the estuary dam), and then increased downstream reaching a maximum at the last sampling station (27 km upward the estuary dam). In contrast, there was little downstream fluctuation in species composition, irrespective of pronounced differences in nutrient concentrations (TN, TP, NO3, NH4, PO4) as well as in algal biomass. In the main river channel, small centric diatoms (Stephanodiscus hantzschii, Cyclotella meneghiniana) and pennate diatoms (Synedra, Fragilaria, Nitzschia) were dominant from winter to early spring (November–April). A mixed community of cryptomonads, centric and pennate diatoms, and coenobial greens (Pediastrum, Scenedesmus) was dominant in late spring (May–June). Blue-green algae (Anabaena, Microcystis, Oscillatoria) were dominant in the summer (July–September). A mid-summer Microcystis bloom occurred at all study sites during the dry season, when discharge was low, though the nutrient concentration varied in each study site. Nutrients appeared everywhere to be in excess of algal requirement and apparently did not influence markedly the downstream and seasonal phytoplankton compositional differences in this river.  相似文献   

    12.
    Ulrich Sommer 《Oecologia》1991,87(2):171-179
    Summary Different initial mixtures of phyto-and zooplankton from different lakes were grown under identical chemical and physical conditions in medium size (8-and 12–1) laboratory microcosm cultures until convergence of phytoplankton species composition was attained. Five such experiments with four (four experiments) or three (one experiment) microcosm cultures were run. Three experiments were performed with weak stirring which permitted sedimentary elimination of the diatoms. Two experiments were conducted with stronger stirring to prevent sedimentation. In the three sedimentation intensive experiments, the final phytoplankton community was composed of the filamentous chlorophyte Mougeotia thylespora together with a smaller biomass of nanoplanktic algae. In the two sedimentation free experiments the final phytoplankton community consisted of pennate diatoms. Both dissolved nutrient concentrations and the chemical composition of biomass suggested strong nutrient limitation of algal growth rates in the final phase of the experiments. The zooplankton communities at the end of the experiments were composed of species that were apparently unable to ingest the large, dominant algae and that presumably fed on the nanoplanktic undergrowth and the bacteria. There was a distinct sequence of events in all experiments: first, the large zooplankton species (Daphnia and Copepoda) were replaced by smaller ones (Chydorus, Bosmina, rotifers); second, all cultures within one experiment developed the same nutritional status (limitation by the same nutrient); and third, the taxonomic composition of phytoplankton of the different cultures within one experiment converged. The last took 7–9 weeks, with is about 2–3 times as long as the time needed in a phytoplankton competition experiment to reach the final outcome.  相似文献   

    13.
    The composition of the sterols, sterol esters and fatty acids has been determined in 8-, 11- and 14-day cultures of three members of the Xanthophyceae, Botrydium granulatum, Tribonema aequale and Monodus subterraneus. The main sterols, whether esterified or unesterified, were cholesterol and clionasterol, whose proportions do not vary with age of culture. Much smaller quantities of cycloartenol and 24-methylenecycloartanol were also found in all three algae. The C16 fatty acids are the most common fatty acids in all three algae with C16:1 being particularly abundant. B. granulatum and T. aequale, however, differ from M. subterraneus in having polyunsaturated C16 fatty acids and a smaller proportion of C20:5.  相似文献   

    14.
    To identify potential diets for rearing captive freshwater mussels, the protein, carbohydrate (CHO), and lipid contents of two green algae, Neochloris oleoabundans, Bracteacoccus grandis, and one diatom, Phaeodactylum tricornutum, were compared at different growth stages. The fatty acid and sterol composition were also identified. Protein was greatest (55–70%) for all species at late log growth stage (LL), and declined in late stationary (LS) growth. CHO was greatest at LS stage for all species (33.9–56.4% dry wt). No significant change in lipid levels occurred with growth stage, but tended to increase in N. oleoabundans. Mean lipid content differed significantly in the order: N. oleoabundans > P. tricornutum > B. grandis. Total fatty acids (TFA) were higher at LS stage compared to other stages in the two green algae, and stationary stage in the diatom. Mean unsaturated fatty acids (UFA) as %TFA was significantly higher in N. oleoabundans than the other species. The green algae contained high percentages of C-18 polyunsaturated fatty acids (PUFAs), while the diatom was abundant in C-16 saturated and mono-unsaturated fatty acids and C-20 PUFA fatty acids. Growth stage had no effect on sterol concentration of any species. B. grandis showed significantly higher sterol levels than the other species except P. tricornutum at S stage. B. grandis was characterized by predominantly 5, C-29 sterols, while N. oleoabundans synthesized 5,7, 5,7,22 , and 7, C-28 sterols. P. tricornutum produced primarily a 5,22, C-28 sterol, and a small amount of a 7,22, C-28 sterol.  相似文献   

    15.
    The rate of photosynthetic carbon fixation (P) in the diatom Thalassiosira weissflogii cultivated in the presence of exogenous glucose in the medium (0–10.56 g C/l) at different levels of illumination—25, 50, and 100 E/(m2 s)—was studied as a function of nitrate nitrogen supply. In the diatoms limited in nitrogen and assimilating exogenous glucose, P was found to decrease or increase depending on the light intensity, glucose concentration, and the duration of exposure. In the diatoms assimilating both nitrate nitrogen and glucose, compared to those supplied with nitrates alone, P was higher at the medium and high light intensities and lower at the low light intensity. The interrelation of the processes of carbon and nitrogen metabolism in mixotrophic algae and the ecological role of glucose uptake by phytoplankton are discussed.  相似文献   

    16.
    Seasonal changes in the quantity and quality of phytoplankton were studied in six channel catfish culture ponds. Chlorophyll a concentrations were generally highest in the summer (averaging >200 g 1–1) but the highest individual chlorophyll a value recorded (910 g 1–1) occurred in the winter during a bloom of Dictyosphaerium pulchellum. On the average, green algae (Chlorophyta) and euglenoids (Euglenophyta) represented relatively constant proportions of the phytoplankton community seasonally (about 35 and 10%, respectively). In the summer and fall, blue-green algae (Cyanophyta) became abundant. Diatoms were relatively abundant at all times and constituted the majority of the community in the winter and spring.  相似文献   

    17.
    The halophilic melanized yeast-like fungi Hortaea werneckii, Phaeotheca triangularis, and the halotolerant Aureobasidium pullulans, isolated from salterns as their natural environment, were grown at different NaCl concentrations and their membrane lipid composition and fluidity were examined. Among sterols, besides ergosterol, which was the predominant one, 23 additional sterols were identified. Their total content did not change consistently or significantly in response to raised NaCl concentrations in studied melanized fungi. The major phospholipid classes were phosphatidylcholine and phosphatidylethanolamine, followed by anionic phospholipids. The most abundant fatty acids in phospholipids contained C16 and C18 chain lengths with a high percentage of C18:29,12. Salt stress caused an increase in the fatty acid unsaturation in the halophilic H. werneckii and halotolerant A. pullulans but a slight decrease in halophilic P. triangularis. All the halophilic fungi maintained their sterol-to-phospholipid ratio at a significantly lower level than did the salt-sensitive Saccharomyces cerevisiae and halotolerant A. pullulans. Electron paramagnetic resonance (EPR) spectroscopy measurements showed that the membranes of all halophilic fungi were more fluid than those of the halotolerant A. pullulans and salt-sensitive S. cerevisiae, which is in good agreement with the lipid composition observed in this study.Communicated by W.D. Grant  相似文献   

    18.
    During the EPOS leg 2 cruise of the RV Polarstern, carried out in late austral spring of 1988–1989, the composition of phytoplankton in relation to the distribution of hydrographic parameters was studied in four successive transects carried out along 49°W and 47°W, across the Weddell-Scotia Confluence (WSC) and the marginal ice zone (which overlapped in part). In all transects, a maximum of phytoplankton biomass was found in the WSC, in surface waters stabilized by ice melting. Different phytoplankton assemblages could be distinguished. North of the Scotia Front (the northern limit of the WSC) diatoms with Chaetoceros neglectus, Nitzschia spp. and (Thalassiosira gravida) dominated the phytoplankton community. This assemblage appeared to have seeded a biomass maximum which occupied, during the first transect, an area of the WSC, south of the Scotia Front. The southernmost stations of the first transect and all the stations to the south of the Scotia Front in the other transects were populated by a flagellate assemblage (with a cryptomonad, Pyramimonas spp. and Phaeocystis sp.) and an assemblage of diatoms (Corethron criophilum and Tropidoneis vanheurkii among others) associated to the presence of ice. During the last three transects, the flagellate assemblage formed a bloom in the low salinity surface layers of the WSC zone. The bulk of the biomass maximum was formed by the cryptomonad which reached concentrations up to 4×106 cells l–1 towards the end of the cruise. Multivariate analysis is used to summarize phytoplankton composition variation. The relationships between the distribution of the different assemblages and the hydrographic conditions indicate that the change of dominance from diatoms to flagellates in the WSC zone was related to the presence of water masses from different origin.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

    19.
    The distribution of sister chromatid exchanges has been examined in the chromosomes of a hybrid male wallaby (Macropus rufogriseus x Wallabia bicolor ), and in the X chromosomes of M. parryi and M. rufus. Comparisons were made of SCE frequency between the two genomes of the hybrid, only one of which has an appreciable amount of constitutive heterochromatin, and between the euchromatic and heterochromatic regions of the M. rufogriseus genome. The frequency of SCEs is closely correlated with the DNA content of the individual chromosomes. The distribution of the SCEs between the euchromatin and heterochromatin in the M. rufogriseus genome showed a deficiency of SCEs observed in the heterochromatin compared with the euchromatin. —A substantial excess of SCEs occurred at the nucleolar organiser region of the M. rufogriseus X chromosome. This excess was absent from the nucleolar organiser region of the X chromosome of the two other macropodine species studied and is accounted for by the presence of an adjacent euchromatin-heterochromatin junction.  相似文献   

    20.
    C. H. Ockey 《Chromosoma》1981,84(2):243-256
    SCE induction in synchronised CHO cells treated with methyl methane sulphonate (MMS) in G1 was studied over successive pairs of cell cycles by introducing bromodeoxyuridine (BrdU) at consecutive G1 stages. When individual cell cycle SCE values were calculated from the data, anomalous results were obtained with ratios of 1.01.82.1 for the first three cycles but a negative value for the fourth cycle. Further studies using different BrdU concentrations showed that MMS induced SCEs were reduced by values exceeding 50% in DNA containing high levels of incorporated BrdU. This reduction was dose dependent and accounted for the anomalous results obtained over successive cycles. Lesions leading to chromatid exchanges were also reduced by the same mechanism. SCEs induced by UV irradiation were also decreased but those induced by the cross-linking agent nitrogen mustard (HN2) remained unaffected. The results indicate that not only are SCE lesions induced by MMS, UV or HN2 expressed independently of the spontaneous SCEs induced by BrdU but that SCE lesions are multiple in nature. Mechanisms by which SCE lesions could be repaired in BrdU containing DNA are discussed. SCE lesions in MMS treated cells arrested in G1 with arginine deprived medium (ADM) are repaired without the presence of BrdU in the DNA. An opposite effect is seen however in the control cells, where SCEs are increased with time spent in ADM arrest. These interactions between the effects of MMS, BrdU and ADM arrest are discussed.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号