首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
E Jay  R Wu 《Biochemistry》1976,15(16):3612-3620
The nucleotide sequence at the cleavage site of the restriction endonuclease isolated from Arthrobacter luteus (Alu) has been determined. The endonuclease cleaves at the center of a palindromic tetranucleotide sequence to give even-ended duplex DNA fragments phosphorylated at the 5'-end. The endonuclease cleaves SV40 form I DNA into 32 fragments. The order and sizes of these fragments have been determined to provide an Alu cleavage map of the SV40 genome.  相似文献   

2.
A recombinant library of human DNA sequences was screened with a segment of simian virus 40 (SV40) DNA that spans the viral origin of replication. One hundred and fifty phage were isolated that hybridized to this probe. Restriction enzyme and hybridization analyses indicated that these sequences were partially homologous to one another. Direct DNA sequencing of two such SV40-hybridizing segments indicated that this was not a highly conserved family of sequences, but rather a set of DNA fragments that contained repetitive regions of high guanine plus cytosine content. These sequences were not members of the previously described Alu family of repeats and hybridized to SV40 DNA more strongly than do Alu family members. Computer analyses showed that the human DNA segments contained multiple homologies with sequences throughout the SV40 origin region, although sequences on the late side of the viral origin contained the strongest cross-hybridizing sequences. Because of the number and complexity of the matches detected, we could not determine unambiguously which of the many possible heteroduplexes between these DNAs was thermodynamically most favored. No hybridization of these human DNA sequences to any other segment of the SV40 genome was detected. In contrast, the human DNA segments isolated cross-hybridized with many sequences within the human genome. We tested for the presence of several functional domains on two of these human DNA fragments. One SV40-hybridizing fragment, SVCR29, contained a sequence which enhanced the efficiency of thymidine kinase transformation in human cells by approximately 20-fold. This effect was seen in an orientation-independent manner when the sequence was present at the 3' end of the chicken thymidine kinase gene. We propose that this segment of DNA contains a sequence analogous to the 72-base-pair repeats of SV40. The existence of such an "activator" element in cellular DNA raises the possibility that families of these sequences may exist in the mammalian genome.  相似文献   

3.
A J Varshavsky  O Sundin  M Bohn 《Cell》1979,16(2):453-466
Examination of DNA fragments produced from either formaldehyde-fixed or unfixed SV40 minichromosomes by multiple-cut restriction endonucleases has led to the following major results: Exhaustive digestion of unfixed minichromosomes with Hae III generated all ten major limit-digest DNA fragments as well as partial cleavage products. In striking contrast to this result, Hae III acted on formaldehyde-fixed minichromosomes to yield only one of the limit-digest fragments, F, which is located in the immediate vicinity of the origin of replication, spanning nucleotides 5169 and 250 on the DNA sequence map of Reddy et al. (1978). This 300 base pair (bp) fragment was released as naked DNA from formaldehyde-fixed, Hae III-digested minichromosomes following treatment either by pronase-SDS or by SDS alone. In the latter case, the remainder of the minichromosome retained its compact configuration as assayed by both sedimentational and electrophoretic methods. In minichromosomes, the F fragment is therefore not only accessible to Hae III at its ends, but is also neither formaldehyde cross-linked into any SDS-resistant nucleoprotein structure nor topologically "locked" within the compact minichromosomal particle. This same fragment was preferentially produced during the early stages of digestion of unfixed minichromosomes with Hae III, and its final yield in the exhaustive Hae III digest was significantly higher than that of other limit-digest fragments. Similar results were obtained upon digestion of either unfixed or formaldehyde-fixed minichromosomes with Alu I. In particular, of approximately twenty major limit-digest DNA fragments, only two fragments (F and P, encompassing nucleotides 5146 to 190, and 190 to 325, respectively) were produced by Alu I from the formaldehyde-fixed minichromosomes. All other restriction endonucleases tested (Mbo I, Mbo II, Hind III, Hin II+III and Hinf I), for which there are no closely spaced recognition sequences in the above mentioned regions of the SV40 genome, did not produce any significant amount of limit-digest DNA fragments from formaldehyde-fixed minichromosomes. These findings, taken together with our earlier data on the preferential exposure of the origin of replication in SV40 minichromosomes (Varshavsky, Sundin and Bohn, 1978), strongly suggest that a specific region of the "late" SV40 DNA approximately 400 bp long is uniquely exposed in the compact minichromosome. It is of interest that, in addition to the origin of replication, this region contains binding sites for T antigen (Tjian, 1977), specific tandem repeated sequences and apparently also the promoters for synthesis of late SV40 mRNAs (Fiers et al., 1978; Reddy et al., 1978).  相似文献   

4.
Linear simian virus 40 (SV40) DNA molecules of genome length and DNA fragments smaller than genome length when prepared with restriction endonucleases and tested for transforming activity on primary cultures of baby rat kidney cells. The linear molecules of genome length (prepared with endonucleases R-EcoRI, R-BamHI, and R-HpaII or R-HapII), a 74% fragment (EcoRI/HpaII or HapII-A), and a 59% fragment (BamHI/HapII-A) could all transform rat kidney cells with the same efficiency as circular SV40 DNA. All transformed lines tested contained the SV40-specific T-antigen in 90 to 100% of the cells, which was taken as evidence that the transformation was SV40 specific. The DNA fragments with transforming activity contained the entire early region of SV40 DNA. Endo R-HpaI, which introduced one break in the early region, apparently inactivated the transforming capacity of SV40 DNA, since no transformation was observed with any of the three HpaI fragments tested. Attempts were made to rescue infectious virus from some of the transformed lines by fusion with permissive BSC-1 cells. Infectious virus was only recovered from the cells transformed by circular form I DNA. No infectious virus could be isolated from any of the other types of transformed cells.  相似文献   

5.
6.
Permissive TC7 cells were separately transfected with simian virus 40 (SV40) EcoRI/Hap II A (74% genome) DNA fragments and EcoRI/Hap II B (26% genome) DNA fragments in the presence of DEAE-dextran. Fusion of the progeny of recipient cells receiving the A fragment, TC7 (SV40/74) cells, with TC7 (SV40/26) cells, which had received the B fragment, resulted in SV40 rescue. TC7 (SV40/74 + 26) cells, which had simultaneously received both complementary subgenomes, either spontaneously produced SV40 upon subculture or yielded virus upon treatment with iododeoxyuridine. In addition, fusion of rat cells containing the EcoRI/Hap II A fragment with TC7 (SV40/26) cells resulted in SV40 rescue. Cytopathology, V-antigen production, neutralization, and electron microscopy were parameters used to verify that the rescued virus was SV40. No infectious virus was produced when the combinations of cells fused did not total a complete SV40 genome equivalent.  相似文献   

7.
8.
Nick-translated simian virus 40 (SV40) [32P]DNA fragments (greater than 2 X 10(8) cpm/micrograms) were resolved into early- and late-strand nucleic acid sequences by hybridization with asymmetric SV40 complementary RNA. Both single-stranded DNA fractions contained less than 0.5% self-complementary sequences; both included [32P]-DNA sequences that derived from all regions of the SV40 genome. In contrast to asymmetric SV40 complementary RNA, both single-stranded [32P]DNAs annealed to viral [3H]DNA at a rate characteristic of SV40 DNA reassociation. Kinetics of reassociation between the single-stranded [32P]DNAs indicated that the two fractions contain greater than 90% of the total nucleotide sequences comprising the SV40 genome. These preparations were used as hybridization probes to detect small amounts of viral DNA integrated into the chromosomes of Chinese hamster cells transformed by SV40. Under the conditions used for hybridization titrations in solution (i.e., 10- to 50-fold excess of radioactive probe), as little as 1 pg of integrated SV40 DNA sequence was assayed quantitatively. Among the transformed cells analyzed, three clones contained approximately one viral genome equivalent of SV40 DNA per diploid cell DNA complement; three other clones contained between 1.2 and 1.6 viral genome equivalents of SV40 DNA; and one clone contained somewhat more than two viral genome equivalents of SV40 DNA. Preliminary restriction endonuclease maps of the integrated SV40 DNAs indicated that four clones contained viral DNA sequences located at a single, clone-specific chromosomal site. In three clones, the SV40 DNA sequences were located at two distinct chromosomal sites.  相似文献   

9.
10.
The genome of the simian virus 40 (SV40) temperature-sensitive (ts) mutant tsD202 rescued by passage on transformed permissive monkey lines (see accompanying paper [Y. Gluzman et al., J. Virol. 24:534-540, 1977]) was analyzed by restriction endonuclease cleavage mapping to obtain biochemical evidence that the rescue of the ts phenotype results from recombination with the resident SV40 genome of the transformed cell. It was demonstrated that the endonuclease R. HaeIII cleavage site, which is located at 0.9 map unit in the standard viral genome (and which is in the proximity of the known map position of the tsD lesion), is missing in the DNAs of the parental tsD202 virus and of three independent revertants of tsD202. In contrast, this cleavage site was shown to be present in the DNAs of four out of five independently derived rescued D202 populations and in the DNA of the SV40 strain, 777, used to transform the monkey cells. Comparison of the endonuclease R. Hin(II + III) cleavage patterns of SV40 strain 777 DNA and tsD202 DNA revealed differences in the electrophoretic mobilities of Hin fragments A, B, and F. However, the corresponding Hin fragments from all four rescued D202 genomes were identical in their mobilities to those of tsD202 DNA, indicating that these regions of the rescued D202 genome are characteristic of the tsD202 parent. We conclude, therefore, that the genome of the rescued D202 virus is a true recombinant, since it contains restriction endonuclease cleavage sites characteristic of both parents, the endogenous resident SV40 genome of the transformed monkey cells and the exogenous tsD202 mutant.  相似文献   

11.
12.
Mapping the transcription site of the SV40-specific late 16 S mRNA.   总被引:14,自引:2,他引:12       下载免费PDF全文
E May  H Kopecka    P May 《Nucleic acids research》1975,2(10):1995-2005
This paper describes the purification of polysomal RNA from SV40-lytically infected CV1 (monkey) cells and separation of the two distinct classes of SV40-specific mRNA sedimenting at 16 S and 19 S. These classes have been hybridized with the whole SV40 DNA genome as well as with the SV40 Hind fragments. The results have permitted the mapping of SV40-specific late 16 S mRNA from approximately 0.945 to 0.175 map units.  相似文献   

13.
14.
15.
The complete nucleotide sequence of human papillomavirus type 1a (7811 nucleotides) has been established. The overall organization of the viral genome is different from that of other related papovaviruses (SV40, BKV, polyoma). Firstly, genetic information seems to be coded by one strand. Secondly, no significant homology is found with SV40 or polyoma coding sequence for either DNA or deducted protein sequences. The relatedness of human and bovine papillomaviruses is revealed by a conserved coding sequence in the two species. Two regions can be defined on the viral genome: the putative early region contains two large open reading frames of 1446 and 966 nucleotides, together with several split ones, and corresponds to the transforming part of the bovine papillomavirus type 1 genome, and the remaining sequences, which include two open reading frames likely to encode structural polypeptide(s). The DNA sequence is analysed and putative signals for regulation of gene expression, and homologies with the Alu family of human ubiquitous repeats and the SV40 72-bp repeat are outlines.  相似文献   

16.
The early region of SV40 DNA may have more than one gene.   总被引:10,自引:0,他引:10  
B Thimmappaya  S M Weissman 《Cell》1977,11(4):837-843
The nucleotide sequence of 70 base pairs (bp) around 0.545 map units (Alu I C and B junction) of the genome from the single Eco RI cleavage site within SV40 DNA is presented. The mRNA transcribed from the early strand template from this stretch contains two copies of the nonsense triplet UAA in each of the three reading frames. Thus at least 25% of the early region of SV40 DNA does not code for the SV40 "A" protein, and the viral contribution to events in the lytic cycle and transformation may be more complex than is generally appreciated.  相似文献   

17.
18.
M Rosenberg  S Segal  E L Kuff  M F Singer 《Cell》1977,11(4):845-857
DNA fragments containing monkey DNA sequences have been isolated from defective SV40 genomes that carry host sequences in place of portions of the SV40 genome. The fragments were isolated by restriction endonuclease cleavage and contain segments homologous to sequences in both the highly repetitive and unique (or less repetitive) classes of monkey DNA. The complete nucleotide sequence of one such fragment [151 base pairs (bp)] predominantly homologous to the highly reiterated class of monkey DNA was determined using both RNA and DNA sequencing methods. The nucleotide sequence of this homogeneous DNA segment does not contain discernible multiple internal repeating units but only a few short oligonucleotide repeats. The reiteration frequency of the sequence in the monkey genome is >106. Digestion of total monkey DNA (from uninfected cells) with endonuclease R Hind III produces relatively large amounts of discrete DNA fragments that contain extensive regions homologous to the fragment isolated from the defective SV40 DNA.A second fragment, also containing monkey sequences, was isolated from the same defective substituted SV40 genome. The nucleotide sequence of the 33 bp of this second fragment that are contiguous to the 151 bp fragment has also been determined.The sequences in both fragments are also present in other, independently derived, defective substituted SV40 genomes.  相似文献   

19.
Li SP  Feng JJ  Wang HG  Wang XF  Lv ZJ 《遗传》2012,34(1):113-119
SV40 PolyA(猴空泡病毒PolyA,简称PolyA)序列是有转录终止作用和使转录的mRNA添加PolyA尾的DNA序列(240 bp),含有AATAAA六核苷酸多腺苷化信号(Polyadenylation signal)。在pEGFP-C1质粒的GFP基因下游插入14个同向串联的Alu序列(Alu14),构建pAlu14质粒,瞬时转染HeLa细胞,用Northern blot检测和荧光显微镜观察GFP RNA和GFP蛋白表达,发现Alu串联序列强烈抑制GFP基因表达,该序列没有转录终止作用产生高分子量GFP融合RNA。又在pAlu14质粒GFP基因和Alu串联序列之间按正、反方向插入PolyA序列及去除AATAAA信号的PolyA序列,插入的这些PolyA序列均能部分解除Alu14对GFP基因的抑制作用;去除AATAAA信号的PolyA正、反序列仍然引起转录终止。将PolyA反序(PolyAas)分为4段每段60 bp,中间的2段分别称为2F2R和3F3R,将2F2R或3F3R插在pAlu14质粒的Alu串联序列的上游,随着插入2F2R片段拷贝数的增加转录的GFP融合RNA的分子量增加;2F2R的下游如果依然是2F2R那么2F2R可以支持转录延伸,如果2F2R下游是Alu串联序列则2F2R导致转录终止。无论插入一个3F3R或插入64个3F3R,均产生低分子量GFP RNA。  相似文献   

20.
W A Scott  D J Wigmore 《Cell》1978,15(4):1511-1518
Simian virus 40 (SV40) chromatin isolated from infected BSC-1 cell nuclei was incubated with deoxyribonuclease I, staphylococcal nuclease or an endonuclease endogenous to BSC-1 cells under conditions selected to introduce one doublestrand break into the viral DNA. Full-length linear DNA was isolated, and the distribution of sites of initial cleavage by each endonuclease was determined by restriction enzyme mapping. Initial cleavage of SV40 chromatin by deoxyribonuclease I or by endogenous nuclease reduced the recovery of Hind III fragment C by comparison with the other Hind III fragments. Similarly, Hpa I fragment B recovery was reduced by comparison with the other Hpa I fragments. When isolated SV40 DNA rather than SV40 chromatin was the substrate for an initial cut by deoxyribonuclease I or endogenous nuclease, the recovery of all Hind III or Hpa I fragments was approximately that expected for random cleavage. Initial cleavage by staphylococcal nuclease of either SV40 DNA or SV40 chromatin occurred randomly as judged by recovery of Hind III or Hpa I fragments. These results suggest that, in at least a portion of the SV40 chromatin population, a region located in Hind III fragment C and Hpa I fragment B is preferentially cleaved by deoxyribonuclease I or by endogenous nuclease but not by staphylococcal nuclease.Complementary information about this nuclease-sensitive region was provided by the appearance of clusters of new DNA fragments after restriction enzyme digestion of DNA from viral chromatin initially cleaved by endogenous nuclease. From the sizes of new fragments produced by different restriction enzymes, preferential endonucleolytic cleavage of SV40 chromatin has been located between map positions 0.67 and 0.73 on the viral genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号