首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nonspecific cross-reacting antigen-2 (NCA-2) is a glycoprotein purified from meconium as a closely correlated entity with carcinoembryonic antigen (CEA). As in the case of CEA, only asparagine-linked sugar chains are included in NCA-2. In order to elucidate the structural characteristics of the sugar chains of NCA-2, they were quantitatively released from the polypeptide backbone by hydrazinolysis and reduced with NaB3H4 after N-acetylation. The radioactive oligosaccharides were fractionated by paper electrophoresis, serial chromatography on immobilized lectin columns, and Bio-Gel P-4 (under 400 mesh) column chromatography. Structures of the oligosaccharides were estimated from the data of the binding specificities of immobilized lectin columns and the effective size of each oligosaccharide determined by passing through a Bio-Gel P-4 column and were then confirmed by endo-beta-galactosidase digestion, sequential digestion with exoglycosidases with different aglycon specificities, and methylation analysis. NCA-2 contains a similar number (27 mol) of sugar chains in one molecule compared with CEA (24-26 mol). However, all sugar chains of NCA-2 were complex-type in contrast to CEA, approximately 8% of the sugar chains of which were high mannose-type (Yamashita, K., Totani, K., Kuroki, M., Matsuoka, Y., Ueda, I., and Kobata, A. (1987) Cancer Res. 47, 3451-3459). About 80% of the oligosaccharides from NCA-2 contain bisecting N-acetylglucosamine residues, and the percent molar ratio of mono-, bi, tri, and tetraantennary oligosaccharides was 2:14:57:27. (+/- Fuc alpha 1----2)Gal beta 1----4(+/- Fuc alpha 1----3)GlcNAc, (+/- Fuc alpha 1----2)Gal beta 1----3(+/- Fuc alpha 1----4)GlcNAc, (+/- Fuc alpha 1----2)Gal beta 1----4(+/- Fuc alpha 1----3)GlcNAc beta 1---- 3Gal beta 1----4GlcNAc, (+/- Fuc alpha 1----2)Gal beta 1----3(+/- Fuc alpha 1----4)GlcNAc beta 1---- 3Gal beta 1----4GlcNAc, and GalNAc beta 1----3Gal beta 1----3GlcNAc beta 1----3Gal beta 1----4GlcNAc were found as their outer chain moieties. Approximately 60% of the oligosaccharides from NCA-2 contain the Gal beta 1----4 or 3GlcNAc beta 1----3Gal beta 1----4GlcNAc beta 1----group in their outer chains.  相似文献   

3.
The structure of sialylated carbohydrate units of bronchial mucins obtained from cystic fibrosis patients was investigated by 500-MHz 1H NMR spectroscopy in conjunction with sugar analysis. After subjecting the mucins to alkaline borohydride degradation, sialylated oligosaccharide-alditols were isolated by anion-exchange chromatography and fractionated by high performance liquid chromatography. Five compounds could be obtained in a rather pure state; their structures were established as the following: A-1, NeuAc alpha(2----3)Gal beta(1----4) [Fuc alpha(1----3)]GlcNAc beta(1----3)Gal-NAc-ol; A-2, NeuAc alpha(2----3)Gal beta(1----4)GlcNAc beta(1----6)-[GlcNAc beta (1----3)]GalNAc-o1; A-3, NeuAc alpha(2----3)Gal beta-(1----4)[Fuc alpha(1----3)]GlcNAc beta(1----3)Gal beta(1----3) GalNAc-o1; A-4, NeuAc alpha(2----3)Gal beta(1----4)[Fuc alpha(1----3)]Glc-NAc NAc beta(1----6)[GlcNAc beta(1----3)]GalNAc-o1; A-6,NeuAc alpha-(2----3) Gal beta(1----4)[Fuc alpha(1----3)]GlcNAc beta(1----6)[Gal beta-(1----4) GlcNAc beta(1----3)]GalNAc-o1. The simultaneous presence of sialic acid in alpha(2----3)-linkage to Gal and fucose in alpha(1----3)-linkage to GlcNAc of the same N-acetyllactosamine unit could be adequately proved by high resolution 1H NMR spectroscopy. This sequence constitutes a novel structural element for mucins.  相似文献   

4.
Four radiolabeled pentasaccharides, GlcNAc beta 1-3(Gal beta 1-4GlcNAc beta 1-6)Gal beta 1-4GlcNAc, Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc, GlcNAc beta 1-3(Gal beta 1-4GlcNAc beta 1-6)Gal beta 1-4Glc, and Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4Glc, were prepared in virtually pure form. They were obtained by partial enzymic beta 1,4-galactosylations of the appropriate tetrasaccharide acceptors or by partial enzymic degalactosylations of the appropriate hexasaccharides, followed by paper chromatographic separations. All four pentasaccharides contain two nonidentical distal branches, making them valuable primers for enzymatic in vitro synthesis of larger oligo(N-acetyllactosaminoglycans).  相似文献   

5.
E Yoon  R A Laine 《Glycobiology》1992,2(2):161-168
Development of tandem mass spectral methods for direct linkage determination in oligosaccharides requires sets of trisaccharides differing only in one structural parameter. In this case, we chose the position of linkage to the reducing-end hexose. These sets of compounds would also be useful for the development of high-resolution separation techniques geared to resolve linkage types. Conventional organic synthesis of such a set could take as long as 2-5 months for each member of the set. Each trisaccharide would require 10-20 steps of synthesis. Instead, we utilized low pH to induce a loose acceptor specificity for bovine milk galactosyltransferase (lactose synthase: EC 2.4.1.22) and by this method, within 2 weeks, generated four novel oligosaccharides for NMR and mass spectral studies. The disaccharides cellobiose (beta 1----4), laminaribiose (beta 1----3), gentiobiose (beta 1----6) and maltose (alpha 1----4) acted as acceptors for EC 2.4.1.22 under these conditions. The beta 1----2-linked disaccharide, sophorose, was not commercially available and is not included in this study. The alpha-linked disaccharides were also examined, but except for the alpha 1----4 disaccharide maltose, were very poor acceptors under a variety of conditions. From these four acceptors, the following four novel trisaccharides were synthesized in micromole amounts, suitable for studies of linkage position using low-energy collision-induced-dissociation tandem mass spectrometry (FAB-MS-CID-MS), and for NMR: Galp(beta 1----4)Glcp(beta 1----3)-Glc, Galp(beta 1----4)Glcp(beta 1----4)Glc, Galp(beta 1----4)Glcp(beta 1----6)-Glc and Galp(beta 1----4)Glcp(alpha 1----4)Glc.  相似文献   

6.
The combining site of the nontoxic carbohydrate binding protein (Abrus precatorius agglutinin, APA) purified from the needs of Abrus precatorius (Jequirity bean), was studied by quantitative precipitin and precipitin-inhibition assays. Of 26 glycoproteins and polysaccharides tested, all, except sialic acid-containing glycoproteins and desialized ovine salivary glycoproteins, reacted strongly with the lectin, and precipitated over 70% of the lectin added, indicating that APA has a broad range of affinity and recognizes (internal) Gal beta 1----sequences of carbohydrate chains. The strong reaction with desialized porcine and rat salivary glycoproteins as well as pneumococcus type XIV polysaccharide suggests that APA has affinity for one or more of the following carbohydrate sequences: Thomsen-Friedenreich (T, Gal beta 1----3GalNAc), blood group precursor type I and/or type II (Gal beta 1----3/4GlcNAc) disaccharide determinants of complex carbohydrates. Among the oligosaccharides tested, the T structure was the best inhibitor; it was 2.4 and 3.2 times more active than type II and type I sequences, respectively. The blood group I Ma-active trisaccharide, Gal beta 1----4GlcNAc beta 1----6Gal, was about as active as the corresponding disaccharide (II). From the above results, we conclude that the size of the combining site of the A. precatorius agglutinin is probably as large as a disaccharide and most strongly complementary to the Gal beta 1----3GalNAc (T determinant) sequence. The carbohydrate specificities of this lectin will be further investigated once the related oligosaccharide structures become available.  相似文献   

7.
Methyl glycosides of the title linear trisaccharide and branched tetrasaccharide were synthesized by stepwise glycosylation. These oligosaccharides represent the fragments of O-antigenic polysaccharides of Shigella flexneri serotypes 2b, 3a, 5b, and X.  相似文献   

8.
9.
GlcNAc beta 1-3(GlcNAc beta 1-6) [14C(U)]Gal and GlcNAc beta 1-3(GlcNAc beta 1-6)[14C(U)]Gal beta 1-4GlcNAc were prepared by in vitro synthesis. They were characterized by enzymatic sequencing, by partial acid hydrolysis, and by periodate oxidation experiments. The two saccharides were isolated also from partial acid hydrolysates of metabolically labeled poly-N-acetyllactosaminoglycans of murine embryonal carcinoma cells (line PC 13). The tetrasaccharide was retarded in a column of agarose-linked wheat germ agglutinin; the trisaccharide was strongly bound. Chromatography in this column separated the trisaccharide into two distinct peaks, which represented interconvertible molecules. Together with our previous data on linear teratocarcinoma saccharides, these findings show that affinity chromatography with immobilized wheat germ agglutinin can be advantageously used in fractionating radiolabeled oligo-N-acetyllactosaminoglycans and saccharides related to them.  相似文献   

10.
The branch specificity of Escherichia coli beta-galactosidase (EC 3.2.1.23) was studied by analyzing the cleavage of the branched hexasaccharide Gal beta 1-4GlcNAc beta 1-3(Gal beta 1-4GlcNAc beta 1-6)[14C(U)]Gal beta 1-4GlcNAc (1). This hexasaccharide was cleaved to pentasaccharides Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6) [14C(U)]Gal beta 1-4GlcNAc (3) and GlcNAc beta 1-3(Gal-beta 1-4GlcNAc beta 1-6) [14C(U)]Gal beta 1-4GlcNAc (4) without any appreciable branch specificity. Even the further conversions of the pentasaccharides 3 and 4 into the tetrasaccharide GlcNAc beta 1-3(GlcNAc beta 1-6)[14C(U)]Gal beta 1-4GlcNAc seemed to proceed at similar rates, without any appreciable branch specificity. In marked contrast to the hexasaccharide 1, the pentasaccharide Gal beta 1-4GlcNAc beta 1-3(Gal beta 1-4GlcNAc beta 1-6)[14C(U)]Gal (2), missing the reducing end GlcNAc, is known to be cleaved selectively at the 6-branch; this finding was confirmed in the present study. The different behaviour of hexasaccharide 1 and pentasaccharide 2 reflects differences in the reactivity of their 6-branches; the preferred conformations of these closely related molecules may be quite different.  相似文献   

11.
M Mori  Y Ito  T Ogawa 《Carbohydrate research》1990,195(2):199-224
The mollu-series glycosphingolipids, O-alpha-D-mannopyranosyl-(1----3)-O-beta-D-mannopyranosyl-(1----4)-O-bet a-D-glucopyranosyl-(1----1)-2-N-tetracosanoyl-(4E)-sphingeni ne and O-alpha-D-mannopyranosyl-(1----3)-O-[beta-D-xylopyranosyl-(1----2])-O- beta-D-mannopyranosyl-(1----4)-O-beta-D-glucopyranosyl-(1----1)-2-N- tetracosanoyl-(4E)-sphingenine, were synthesized for the first time by using 2,3,4-tri-O-acetyl-D-xylopyranosyl trichloroacetimidate, methyl 2,3,4,6-tetra-O-acetyl-1-thio-alpha-D-mannopyranoside, benzyl O-(4,6-di-O-benzyl-beta-D-mannopyranosyl)-(1----4)-2,3,6-tri-O-benzyl-be ta-D- glucopyranoside 9, and (2S,3R,4E)-2-azido-3-O-(tert-butyldiphenylsilyl)-4-octade cene-1,3-diol 6 as the key intermediates. The hexa-O-benzyl disaccharide 9 was prepared by coupling two monosaccharide synthons, namely, 2,3-di-O-allyl-4,6-di-O-benzyl-alpha-D-mannopyranosyl bromide and benzyl 2,3,6-tri-O-benzyl-beta-D-glucopyranoside. It was demonstrated that azide 6 was highly efficient as a synthon for the ceramide part in the coupling with both glycotriaosyl and glycotetraosyl donors, particularly in the presence of trimethylsilyl triflate.  相似文献   

12.
Hen oviduct membranes were shown to contain high activity of a novel enzyme, UDP-GlcNac:GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-R (GlcNAc to Man) beta 4-GlcNAc-transferase VI. The enzyme was shown to transfer GlcNAc in beta 1-4 linkage to the D-mannose residue of GlcNAc beta 1-6 (GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or methyl. Radioactive enzyme products were purified by several chromatographic steps, including high performance liquid chromatography, and structures were determined by proton nmr, fast atom bombardment-mass spectrometry, and methylation analysis to be GlcNAc beta 1-6 ([14C]GlcNAc beta 1-4) (GlcNAc beta 1-2) Man alpha-R. The enzyme is stimulated by Triton X-100 and has optimum activity at a relatively high MnCl2 concentration of about 100 mM; Co2+, Mg2+, and Ca2+ could partially substitute for Mn2+. A tissue survey demonstrated high GlcNAc-transferase VI activity in hen oviduct and lower activity in chicken liver and colon, duck colon, and turkey intestine. No activity was found in mammalian tissues. Hen oviduct membranes cannot act on GlcNAc beta 1-6Man alpha-R but have a beta 4-GlcNAc-transferase activity that converts GlcNAc beta 1-2Man alpha-R to GlcNAc beta 1-4(GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or 1-6Man beta methyl. The latter activity is probably due to GlcNAc-transferase IV which preferentially adds GlcNAc in beta 1-4 linkage to the Man alpha 1-3 arm of the GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc-Asn core structure of asparagine-linked glycans. The minimum structural requirement for a substrate of beta 4-GlcNAc-transferase VI is therefore the trisaccharide GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-; this trisaccharide is found on the Man alpha 6 arm of many branched complex asparagine-linked oligosaccharides. The data suggest that GlcNAc-transferase VI acts after the synthesis of the GlcNAc beta 1-2Man alpha 1-3-, GlcNAc beta 1-2Man alpha 1-6-, and GlcNAc beta 1-6 Man alpha 1-6-branches by GlcNAc-transferases I, II, and V, respectively, and is responsible for the synthesis of branched oligosaccharides containing the GlcNAc beta 1-6(GlcNAc beta 1-4)(GlcNAc beta 1-2)Man alpha 1-6Man beta moiety.  相似文献   

13.
A Thall  U Galili 《Biochemistry》1990,29(16):3959-3965
The study of the expression of Gal alpha 1----3Gal beta 1----4GlcNAc residues on mammalian glycoconjugates is of particular interest since as many as 1% of circulating IgG antibodies in man (the natural anti-Gal antibody) interact specifically with this carbohydrate residue. In recent studies, we have found that Gal alpha 1----3Gal beta 1----4GlcNAc residues are abundant on red cells and nucleated cells of nonprimate mammals, prosimians, and New World monkeys, but their expression is diminished in Old World monkeys, apes, and humans. In the present work, we have analyzed the expression of these residues on secreted mammalian glycoproteins. For this purpose, we have developed a radioimmunoassay (RIA) which enables the quantification of Gal alpha 1----3Gal beta 1----4GlcNAc residues on the secreted glycoproteins. Purified biotinylated anti-Gal was used as the antibody in the RIA, and bovine thyroglobulin enriched for Gal alpha 1----3Gal beta 1----4GlcNAc residues served as a solid-phase antigen. In this study, it is reported for the first time that the evolutionary pattern of Gal alpha 1----3Gal beta 1----4GlcNAc residue distribution in in vivo secreted glycoproteins is similar to that observed in membranes of cell lines and of red cells. Thyroglobulin, fibrinogen, or IgG molecules from nonprimate mammals and from New World monkeys express varying amounts of Gal alpha 1----3Gal beta 1----4GlcNAc residues ranging between 0.01 and 11 residues per molecule, whereas no such residues are present on any of these glycoproteins of human or Old World monkey origin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Incubation of honeybee (Apis mellifica) venom-gland extracts with GDP-[14C]fucose and GlcNAc beta 1----2Man alpha 1----6(GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(Fuc alpha 1----6)GlcNAc beta 1----N-Asn-peptide(NAc) gave a labeled product in 40% yield. Analysis by 500-MHz 1H-NMR spectroscopy indicated the transferred fucose-(Fuc) residue to be alpha 1----3-linked to the Asn-bound GlcNAc. Further proof was provided by one-dimensional and two-dimensional 1H-NMR analysis of the incubation mixture, after incubation with beta-N-acetylhexosaminidase. The established carbohydrate structure (formula; see text) proves the existence of a novel alpha 1----3-fucosyltransferase with the ability to effect difucosylation of the Asn-bound GlcNAc in N-glycans.  相似文献   

15.
Pig and rat colon mucosal membrane preparations catalyze the in vitro transfer of N-acetyl-D-glucosamine (GlcNAc) from UDP-GlcNAc to GalNAc-ovine submaxillary mucin to form GlcNAc beta 1-3GalNAc-mucin. Rat colon also catalyzes the in vitro transfer of GlcNAc from UDP-GlcNAc to GlcNAc beta 1-3GalNAc-mucin to form GlcNAc beta 1-3(GlcNAc beta 1-6) GalNAc-mucin. This is the first demonstration of in vitro synthesis of the GlcNAc beta 1-3GalNAc disaccharide and of the GlcNAc beta 1-3-(GlcNAc beta 1-6)GalNAc trisaccharide, two of the four major core types found in mammalian glycoproteins of the mucin type, i.e., those containing oligosaccharides with GalNAc-alpha-serine (threonine) linkages. The activity catalyzing synthesis of the disaccharide has been named UDP-GlcNAc:GalNAc-R beta 3-N-acetylglucosaminyltransferase (mucin core 3 beta 3-GlcNAc-transferase), while the activity responsible for synthesizing the trisaccharide has been named UDP-GlcNAc:GlcNAc beta 1-3GalNAc-R (GlcNAc to GalNAc) beta 6-N-acetylglucosaminyltransferase (mucin core 4 beta 6-GlcNAc-transferase). The beta 3-GlcNAc-transferase from pig colon is activated by Triton X-100, has an absolute requirement for Mn2+, and transfers GlcNAc to GalNAc-alpha-phenyl, GalNAc-alpha-benzyl, and GalNAc-ovine submaxillary mucin with apparent Km values of 5, 2, and 3 mM and Vmax values of 59, 62, and 37 nmol h-1 (mg of protein)-1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
beta 1----4 Galactosyltransferase was purified from rat liver microsomes. Catalytic properties of the enzyme resembled those of previously purified soluble and membrane-bound beta 1----4 galactosyltransferases. The enzyme purified in the present study showed a major band around a molecular weight of 53,000 on SDS-PAGE. The NH2-terminal sequence of the enzyme was determined up to the 20th residue. The sequence was identical to the amino acid sequence from Ala-13 to Lys-32 deduced from mouse beta 1----4 galactosyltransferase cDNA. These results suggest that most of the mature enzyme in rat liver microsomes is produced by removal of the NH2-terminal 12 amino acids from a precursor polypeptide.  相似文献   

17.
A beta 1-6N-acetylglucosaminyltransferase has been identified in microsomal preparations from hog gastric mucosa which is able to synthesize branch points in branched lactosaminoglycans (blood group I antigenic structures). The enzyme can be assayed specifically using the synthetic trisaccharide GlcNAc beta 1-3Gal beta 1-4Glc beta-OMe as acceptor. The product of the transferase reaction was isolated and identified by methylation analysis as, (Formula: see text) Into this tetrasaccharide two galactose residues were incorporated by the specific beta-N-acetylglucosaminide beta 1-4-galactosyltransferase from bovine milk. Thus a hexasaccharide was formed which was shown to inhibit strongly a murine monoclonal and a human anti-I antibody. Using a variety of oligosaccharides and glycolipids, which correspond to structures found in linear lactosaminoglycan chains, the acceptor substrate specificity of the branching enzyme was determined. From these results it is concluded that branching occurs only during the elongation process at the nonreducing end and follows a well-defined order. N-Acetylglucosamine is first transferred to position 3 of a terminal galactose followed immediately by the addition of a second N-acetylglucosamine to position 6; only then the 1-3 and the 1-6 branches are further elongated by galactose residues.  相似文献   

18.
We have identified a mannosidase in rat liver that releases alpha 1----2, alpha 1----3 and alpha 1----6 linked manose residues from oligosaccharide substrates, MannGlcNAc where n = 4-9. The end product of the reaction is Man alpha 1----3[Man alpha 1----6]Man beta 1----4GlcNAc. The mannosidase has been purified to homogeneity from a rat liver microsomal fraction, after solubilization into the aqueous phase of Triton X-114, by anion-exchange, hydrophobic and hydroxyapatite chromatography followed by chromatofocusing. The purified enzyme is a dimer of a 110-kDa subunit, has a pH optimum between 6.1 and 6.5 and a Km of 65 microM and 110 microM for the Man5GlcNAc-oligosaccharide or Man9GlcNAc-oligosaccharide substrates, respectively. Enzyme activity is inhibited by EDTA, by Zn2+ and Cu2+, and to lesser extent by Fe2+ and is stabilized by Co2+. The pattern of release of mannose residues from a Man6GlcNAc substrate shows an ordered hydrolysis of the alpha 1----2 linked residue followed by hydrolysis of alpha 1----3 and alpha 1----6 linked residues. The purified enzyme shows no activity against p-nitrophenyl-alpha-mannoside nor the hybrid GlcNAc Man5GlcNAc oligosaccharide. The enzyme activity is inhibited by swainsonine and 1-deoxymannojirimycin at concentrations 50-500-fold higher than required for complete inhibition of Golgi-mannosidase II and mannosidase I, respectively. The data indicate strongly that the enzyme has novel activity and is distinct from previously described mannosidases.  相似文献   

19.
S Takasaki  A Kobata 《Biochemistry》1986,25(19):5709-5715
Asparagine-linked sugar chains were quantitatively released from fetuin by hydrazinolysis. Structural analysis of the sugar chains by sequential exoglycosidase digestion in combination with methylation analysis and Smith degradation revealed that most of them have typical biantennary (8%) and triantennary (74%) structures containing different amounts of N-acetylneuraminic acid residues. In addition, an unusual tetrasialyl triantennary sugar chain (17%) containing the Gal beta 1----3GlcNAc sequence in the outer chain moiety was detected, and its structure was elucidated as NeuAc alpha 2----3Gal beta 1----3(NeuAc alpha 2----6)-GlcNAc beta 1----4(NeuAc alpha 2----6Gal beta 1----4GlcNAc beta 1----2)Man alpha 1----3(NeuAc alpha 2----3Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6)Man beta 1----4GlcNAc beta 1----4GlcNAc.  相似文献   

20.
The substrate specificity of an endo-(1----4)-beta-D-xylanase of the yeast Cryptococcus albidus was investigated using a series of methyl beta-D-xylotriosides. In addition to (1----4) linkages, the enzyme could cleave (1----3) and (1----2) linkages adjacent to a (1----4) linkage and further from the non-reducing end of the substrate. The enzyme could hydrolyse a (1----3) linkage that attached a terminal xylopyranosyl group to a (1----4)-linked xylobiosyl moiety. The enzyme did not attack alpha-D-xylosidic linkages. The rate of cleavage of (1----4) linkages was much higher than those of other linkages at 0.5mM substrate, but the rates were comparable at 20mM substrate when transglycosylation reactions also occurred that facilitated degradation of the substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号