首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purification and substrate specificity of rat kidney "enkephalinase"   总被引:2,自引:0,他引:2  
B Malfroy  J C Schwartz 《Life sciences》1982,31(16-17):1745-1748
  相似文献   

2.
3.
4.
5.
1. Two "acid" forms, Am and Al, of beta-galactosidase from sheep kidney have been isolated and purified 349- and 154-fold, respectively, with a recovery of about 8%. 2. Their mol. wts were about 450,000 and 230,000, respectively. Am seems to be a dimer of Al. The aggregation is stimulated by NaCl. 3. The "acid" beta-galactosidase has a pH optimum between 4.0 and 5.0 for both forms. They are located in the lysosomes. The optimal temperature is 37 degrees C and 40 degrees C for Al and Am forms, respectively. 4. Three peaks were detected by isoelectric focusing. After sialidase treatment, these peaks were obtained at higher pH values. 5. The activation energy values were 10.75 and 11.72 kcal/mol for Am and Al, respectively. 6. A variety of chemicals were tested as possible activators or inhibitors. The enzyme is strongly inhibited by gamma-D-galactonolactone, and the kinetic evidence suggests a competitive inhibition in all cases.  相似文献   

6.
We have characterized the polarity of the transferrin receptor in the epithelial Madin-Darby canine kidney (MDCK) cell line. The receptor is present in approximately 165,000 copies per cell, migrates as a diffuse band upon SDS gel electrophoresis with Mr 90,000, displays a dissociation constant for diferritransferrin at neutral pH of approximately 2 nM, and is active in essentially all of the cells of the population. Transferrin-mediated 55Fe uptake was used to measure the polarity of active transferrin receptors in filter-grown MDCK cells. The ratio of basolateral to apical receptors was approximately 800:1 for the high resistance strain I MDCK cells (typically greater than 2,000 ohm X cm2) and approximately 300:1 for the lower resistance strain II cells (less than 350 ohm X cm2). In combination with morphometric data this shows that a difference in resistance between these two strains is not reflected in a significant difference in cell surface polarity. We used the recycling of transferrin receptor in filter-grown MDCK cells to evaluate the accuracy of the sorting of a basolateral protein during endocytosis. Monitoring the amount of apically released 125I-labeled transferrin after application of 55Fe- and 125I-labeled transferrin to the basolateral surface provided a sensitive assay of the accuracy of sorting during recycling of the receptor from endosomes to the plasma membrane. The accuracy of transferrin receptor sorting (greater than 99.88%) during a single cycle of transit between the endosome and the plasma membrane is sufficient to maintain the high level of polarity of the cell.  相似文献   

7.
8.
Anti-endothelial cell antibodies (AECA) have been reported to cause endothelial dysfunction, but their clinical importance for tissue-specific endothelial cells is not clear. We hypothesized that AECA reactive with human kidney endothelial cells (HKEC) may cause renal endothelial dysfunction in patients with chronic kidney diseases. We report that a higher fraction (56%) of end-stage renal disease (ESRD) patients than healthy controls (5%) have AECA reactive against kidney endothelial cells (P <0.001). The presence of antibodies was associated with female gender (P < 0.001), systolic hypertension (P < 0.01), and elevated TNF-α (P < 0.05). These antibodies markedly decrease expression of both adherens and tight junction proteins VE-cadherin, claudin-1, and zonula occludens-1 and provoked a rapid increase in cytosolic free Ca(2+) and rearrangement of actin filaments in HKEC compared with controls. This was followed by an enhancement in protein flux and phosphorylation of VE-cadherin, events associated with augmented endothelial cell permeability. Additionally, kidney biopsies from ESRD patients with AECA but not controls demonstrated a marked decrease in adherens and tight junctions in glomerular endothelium, confirming our in vitro data. In summary, our data demonstrate a causal link between AECA and their capacity to induce alterations in glomerular vascular permeability.  相似文献   

9.
有研究报道在慢性肾脏病的发生发展过程中可发现一系列肠道变化,并有学者用"肠-肾轴"理论阐述肾脏病中肠道的变化以及疾病过程中肾脏与肠道之间的联系,提示调节肠道菌群或可成为治疗慢性肾脏病的新方法。本文根据"肠-肾轴"理论,综述了在慢性肾脏病发展过程中肠道出现的变化,如肠内代谢物异常、肠道损伤以及肠道菌群失调等。以慢性肾脏病发生发展过程中肠道的异常变化为治疗切入点,总结了以大黄为主的中药在调节肠道功能、修复肠道屏障、纠正肠道代谢物异常等方面具有的显著疗效,为治疗慢性肾脏病及减少并发症等提供新的治疗思路和新方法。  相似文献   

10.
Furosemide increases the synthesis of two major renal eicosanoids, prostacyclin (PGI2) and thromboxane A2 (TXA2), by stimulating the release of arachidonic acid which in turn is metabolized to PGG2/PGH2, then to PGI2 and TXA2. PGI2 may mediate, in part, the early increment in plasma renin activity (PRA) after furosemide. We hypothesized that thromboxane synthetase inhibition should direct prostaglandin endoperoxide metabolism toward PGI2, thereby enhancing the effects of furosemide on renin release. Furosemide (2.0 mg . kg-1 i.v.) was injected into Sprague-Dawley rats pretreated either with vehicle or with U-63,557A (a thromboxane synthetase inhibitor, 2 mg/kg-1 followed by 2 mg/kg-1 X hr-1). Urinary 6ketoPGF1 alpha and thromboxane B2 (TXB2), reflecting renal synthesis of PGI2 and TXA2, as well as PRA and serum TXB2, were measured. Serum TXB2 was reduced by 96% after U-63,557A. U-63,557A did not affect the basal PRA. Furosemide increased PRA in both vehicle and U63,557A treated rats. However, the PRA-increment at 10, 20 and 40 min following furosemide administration was greater in U-63,557A-treated rats than in vehicle-treated rats and urine 6ketoPGF1 alpha excretion rates were increased. These effects of thromboxane synthesis inhibition are consistent with a redirection of renal PG synthesis toward PGI2 and further suggest that such redirection can be physiologically relevant.  相似文献   

11.
12.
The erythropoietin plasma level and RNA synthesis in both kidneys were studied in rats with the H. Selye "endocrine" kidney under 4-hour hyperoxia. It was shown that a short period of hyperoxia leads to a 2-fold decrease in erythropoietin plasma level and to the fall of RNA synthesis in the "endocrine" and intact kidneys. From the evidence obtained it is concluded that hyperoxia inhibits erythropoietin production in the kidneys. Changes in high-polymeric RNA synthesis suggest that DNA-dependent RNA synthesis is one of the mechanisms of the hormone biogenesis.  相似文献   

13.
14.
There is increasing evidence that proteins in tubular fluid are "nephrotoxic." In vivo it is difficult to study protein loading of tubular epithelial cells in isolation, i.e., without concomitant glomerular damage or changes of renal hemodynamics, etc. Recently, a unique amphibian model has been described which takes advantage of the special anatomy of the amphibian kidney in which a subset of nephrons drains the peritoneal cavity (open nephrons) so that intraperitoneal injection of protein selectively causes protein storage in and peritubular fibrosis around open but not around closed tubules. There is an ongoing debate as to what degree albumin per se is nephrotoxic and whether modification of albumin alters its nephrotoxicity. We tested the hypothesis that carbamylation and glycation render albumin more nephrotoxic compared with native albumin and alternative albumin modifications, e.g., lipid oxidation and lipid depletion. Preparations of native and modified albumin were injected into the axolotl peritoneum. The kidneys were retrieved after 10 days and studied by light microscopy as well as by immunohistochemistry [transforming growth factor (TGF)-β, PDGF, NF-κB, collagen I and IV, RAGE], nonradioactive in situ hybridization, and Western blotting. Two investigators unaware of the animal groups evaluated and scored renal histology. Compared with unmodified albumin, glycated and carbamylated albumin caused more pronounced protein storage. After no more than 10 days, selective peritubular fibrosis was seen around nephrons draining the peritoneal cavity (open nephrons), but not around closed nephrons. Additionally, more intense expression of RAGE, NF-κB, as well as PDGF, TGF-β, EGF, ET-1, and others was noted by histochemistry and confirmed by RT-PCR for fibronectin and TGF-β as well as nonradioactive in situ hybridization for TGF-β and fibronectin. The data indicate that carbamylation and glycation increase the capacity of albumin to cause tubular cell damage and peritubular fibrosis.  相似文献   

15.
16.
17.
18.
Comparison of the primary structures of pig kidney D-amino acid oxidase (DAO) and human brain D-aspartate oxidase (DDO) revealed a notable difference at I215-N225 of DAO and the corresponding region, R216-G220, of DDO. A DAO mutant, in which I215-N225 is substituted by R216-G220 of DDO, showed D-aspartate-oxidizing activity that wild-type DAO does not exhibit, together with a considerable decrease in activity toward D-alanine. These findings indicate that I215-N225 of DAO contributes profoundly to its substrate specificity. Based on these results and the crystal structure of DAO, we systematically mutated the E220-Y224 region within the short stretch in question and obtained five mutants (220D224G, 221D224G, 222D224G, 223D224G, and 224D), in each of which an aspartate residue is mutated to E220-Y224. All of the mutants exhibited decreased apparent K(m) values toward D-arginine, i.e., to one-seventh to one-half that of wild type DAO. The specificity constant, k(cat app)/K(m app), for D-arginine increased by one order of magnitude for the 221D224G or 222D224G mutant, whereas that for D-alanine or D-serine decreased to marginal or nil.  相似文献   

19.
Haptoglobin (Hp) synthesis occurs almost exclusively in liver, and it is rapidly upregulated in response to stress. Because many of the pathways that initiate hepatic Hp synthesis are also operative during acute kidney injury (AKI), we tested whether AKI activates the renal cortical Hp gene. CD-1 mice were subjected to six diverse AKI models: ischemia-reperfusion, glycerol injection, cisplatin nephrotoxicity, myoglobinuria, endotoxemia, and bilateral ureteral obstruction. Renal cortical Hp gene induction was determined either 4-72 h or 1-3 wk later by measuring Hp mRNA and protein levels. Relative renal vs. hepatic Hp gene induction during endotoxemia was also assessed. Each form of AKI induced striking and sustained Hp mRNA increases, leading to ~10- to 100-fold renal Hp protein elevations (ELISA; Western blot). Immunohistochemistry, and isolated proximal tubule assessments, indicated that the proximal tubule was the dominant (if not only) site of the renal Hp increases. Corresponding urinary and plasma Hp elevations were surrogate markers of this response. Endotoxemia evoked 25-fold greater Hp mRNA increases in kidney vs. liver, indicating marked renal Hp gene reactivity. Clinical relevance of these findings was suggested by observations that urine samples from 16 patients with established AKI had statistically higher (~12×) urinary Hp levels than urine samples from either normal subjects or from 15 patients with chronic kidney disease. These AKI-associated urinary Hp increases mirrored those seen for urinary neutrophil gelatinase-associated lipoprotein, a well accepted AKI biomarker gene. In summary, these studies provide the first evidence that AKI evokes rapid, marked, and sustained induction of the proximal tubule Hp gene. Hp's known antioxidant, as well as its protean pro- and anti-inflammatory, actions imply potentially diverse effects on the evolution of acute tubular injury.  相似文献   

20.
There is an emerging concept in clinical nephrology that acute kidney injury (AKI) can initiate chronic kidney disease (CKD). However, potential mechanisms by which this may occur remain elusive. Hence, this study tested the hypotheses that 1) AKI triggers progressive activation of selected proinflammatory genes, 2) there is a relative failure of compensatory anti-inflammatory gene expression, 3) proinflammatory lipid accumulation occurs, 4) these changes correspond with "gene-activating" histone acetylation, and 5) in concert, progressive renal disease results. CD-1 mice were subjected to 30 min of unilateral renal ischemia. Assessments were made 1 day, 1 wk, or 3 wk later. Results were contrasted to those observed in uninjured contralateral kidneys or in kidneys from normal mice. Progressive renal injury occurred throughout the 3-wk postischemic period, as denoted by stepwise increases in neutrophil gelatinase-associated lipocalin gene induction and ongoing histologic damage. By 3 wk postischemia, progressive renal disease was observed (massive tubular dropout; 2/3rds reduction in renal weight). These changes corresponded with progressive increases in proinflammatory cytokine/chemokine gene expression (MCP-1, TNF-α, TGF-β1), a relative failure of anti-inflammatory enzyme/cytokine (heme oxygenase-1; IL-10) upregulation, and progressive renal lipid (cholesterol/triglyceride) loading. Stepwise increases in collagen III mRNA and collagen deposition (Sirius red staining) indicated a progressive profibrotic response. Postischemic dexamethasone treatment significantly preserved renal mass, indicating functional significance of the observed proinflammatory state. Progressive gene-activating H3 acetylation was observed by ELISA, rising from 5% at baseline to 75% at 3 wk. This was confirmed by chromatin immunoprecipitation assay of target genes. In sum, these results provide experimental support for the clinical concept that AKI can trigger CKD, this is partially mediated by progressive postischemic inflammation, ongoing lipid accumulation results (potentially evoking "lipotoxicity"), and increasing histone acetylation at proinflammatory/profibrotic genes may contribute to this self-sustaining injury-promoting state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号