首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Oxidative damage of DNA is a source of mutation in living cells. Although all organisms have evolved mechanisms of defense against oxidative damage, little is known about these mechanisms in nonenteric bacteria, including pseudomonads. Here we have studied the involvement of oxidized guanine (GO) repair enzymes and DNA-protecting enzyme Dps in the avoidance of mutations in starving Pseudomonas putida. Additionally, we examined possible connections between the oxidative damage of DNA and involvement of the error-prone DNA polymerase (Pol)V homologue RulAB in stationary-phase mutagenesis in P. putida. Our results demonstrated that the GO repair enzymes MutY, MutM, and MutT are involved in the prevention of base substitution mutations in carbon-starved P. putida. Interestingly, the antimutator effect of MutT was dependent on the growth phase of bacteria. Although the lack of MutT caused a strong mutator phenotype under carbon starvation conditions for bacteria, only a twofold increased effect on the frequency of mutations was observed for growing bacteria. This indicates that MutT has a backup system which efficiently complements the absence of this enzyme in actively growing cells. The knockout of MutM affected only the spectrum of mutations but did not change mutation frequency. Dps is known to protect DNA from oxidative damage. We found that dps-defective P. putida cells were more sensitive to sudden exposure to hydrogen peroxide than wild-type cells. At the same time, the absence of Dps did not affect the accumulation of mutations in populations of starved bacteria. Thus, it is possible that the protective role of Dps becomes essential for genome integrity only when bacteria are exposed to exogenous agents that lead to oxidative DNA damage but not under physiological conditions. Introduction of the Y family DNA polymerase PolV homologue rulAB into P. putida increased the proportion of A-to-C and A-to-G base substitutions among mutations, which occurred under starvation conditions. Since PolV is known to perform translesion synthesis past damaged bases in DNA (e.g., some oxidized forms of adenine), our results may imply that adenine oxidation products are also an important source of mutation in starving bacteria.  相似文献   

3.
4.
Under growth-restricting conditions bacterial populations can rapidly evolve by a process known as stationary-phase mutagenesis. Bacterial nonhomologous end-joining (NHEJ) system which consists of the DNA-end-binding enzyme Ku and the multifunctional DNA ligase LigD has been shown to be important for survival of bacteria especially during quiescent states, such as late stationary-phase populations or sporulation. In this study we provide genetic evidence that NHEJ enzymes participate in stationary-phase mutagenesis in a population of carbon-starved Pseudomonas putida. Both the absence of LigD or Ku resulted in characteristic spectra of stationary-phase mutations that differed from each other and also from the wild-type spectrum. This indicates that LigD and Ku may participate also in mutagenic pathways that are independent from each other. Our results also imply that both phosphoesterase (PE) and polymerase (POL) domains of the LigD protein are involved in the occurrence of mutations in starving P. putida. The participation of both Ku and LigD in the occurrence of stationary-phase mutations was further supported by the results of the analysis of mutation spectra in stationary-phase sigma factor RpoS-minus background. The spectra of mutations identified in the RpoS-minus background were also distinct if LigD or Ku was absent. Interestingly, the effects of the presence of these enzymes on the frequency of occurrence of certain types of mutations were different or even opposite in the RpoS-proficient and deficient backgrounds. These results imply that RpoS affects performance of mutagenic pathways in starving P. putida that utilize LigD and/or Ku.  相似文献   

5.
Using a pair of plasmids carrying the rpsL target sequence in different orientations to the replication origin, we analyzed a large number of forward mutations generated in wild-type and mismatch-repair deficient (MMR(-)) Escherichia coli cells to assess the effects of directionality of replication-fork movement on spontaneous mutagenesis and the generation of replication error. All classes of the mutations found in wild-type cells but not MMR(-) cells were strongly affected by the directionality of replication fork movement. It also appeared that the directionality of replication-fork movement governs the directionality of sequence substitution mutagenesis, which occurred in wild-type cells at a frequency comparable to base substitutions and single-base frameshift mutations. A very strong orientation-dependent hot-spot site for single-base frameshift mutations was discovered and demonstrated to be caused by the same process involved in sequence substitution mutagenesis. It is surprising that dnaE173, a potent mutator mutation specific for sequence substitution as well as single-base frameshift, did not enhance the frequency of the hot-spot frameshift mutation. Furthermore, the frequency of the hot-spot frameshift mutation was unchanged in the MMR(-) strain, whereas the mutHLS-dependent mismatch repair system efficiently suppressed the generation of single-base frameshift mutations. These results suggested that the hot-spot frameshift mutagenesis might be initiated at a particular location containing a DNA lesion, and thereby produce a premutagenic replication intermediate resistant to MMR. Significant numbers of spontaneous single-base frameshift mutations are probably caused by similar mechanisms.  相似文献   

6.
We investigated the survival, cell length, and development of general stress resistance in populations of Pseudomonas fluorescens R2f and its rifampin-resistant mutant, R2f Rpr, following exposure to carbon starvation conditions in liquid cultures and residence in two different soils, Flevo silt loam (FSL) and Ede loamy sand (ELS). In much the same way as was recently shown for P. putida KT2442, carbon-starved P. fluorescens R2f populations revealed enhanced resistance to otherwise lethal treatments, such as exposure to ethanol, high temperature, osmotic tension, and oxidative stress. A large population of nonculturable P. fluorescens R2f Rpr cells arose shortly after their introduction into ELS soil, whereas the formation of nonculturable cells was not observed in FSL soil. Also, the inoculant cell (based on immunofluorescence) and CFU counts decreased faster in ELS soil than in FSL soil. Introduction of carbon-starved instead of exponential-growth-phase R2f Rpr cells into ELS soil did not affect bacterial survival. The inoculant cell length decreased in soil, and no large differences in cell length in the two soil types were observed. Addition of glucose to ELS soil resulted in a stable cell length of R2f Rpr cells, whereas carbon-starved cells introduced into ELS soil remained small. Exponentially growing R2f Rpr cells developed enhanced resistance to ethanol, high temperature, osmotic tension, and oxidative stress within 1 day in both soils, whereas cells introduced into ELS soil amended with glucose showed decreased resistance. Cells that were carbon starved prior to introduction into ELS soil showed unchanged stress resistance levels upon residence in soil.  相似文献   

7.
Previous studies showed that a Bacillus subtilis strain deficient in mismatch repair (MMR; encoded by the mutSL operon) promoted the production of stationary-phase-induced mutations. However, overexpression of the mutSL operon did not completely suppress this process, suggesting that additional DNA repair mechanisms are involved in the generation of stationary-phase-associated mutants in this bacterium. In agreement with this hypothesis, the results presented in this work revealed that starved B. subtilis cells lacking a functional error prevention GO (8-oxo-G) system (composed of YtkD, MutM, and YfhQ) had a dramatic propensity to increase the number of stationary-phase-induced revertants. These results strongly suggest that the occurrence of mutations is exacerbated by reactive oxygen species in nondividing cells of B. subtilis having an inactive GO system. Interestingly, overexpression of the MMR system significantly diminished the accumulation of mutations in cells deficient in the GO repair system during stationary phase. These results suggest that the MMR system plays a general role in correcting base mispairing induced by oxidative stress during stationary phase. Thus, the absence or depression of both the MMR and GO systems contributes to the production of stationary-phase mutants in B. subtilis. In conclusion, our results support the idea that oxidative stress is a mechanism that generates genetic diversity in starved cells of B. subtilis, promoting stationary-phase-induced mutagenesis in this soil microorganism.  相似文献   

8.
The rpoS gene in Pseudomonas putida was essential for plant root colonization under competitive conditions from other microbes. The RpoS- mutant survived less well than the wild-type strain in culture medium, and unlike the wild-type, failed to colonize the roots in a peat matrix containing an established diverse microflora. The RpoS-deficient P. putida isolate was generated by insertion of a glucuronidase-npt cassette into the rpoS gene. The RpoS mutant had dose-dependent increased sensitivity to oxidative stress and produced Mn-superoxide dismutase activity earlier than the parent. While extracts from wild-type P. putida stationary-phase cells contained three isozymes of catalase (CatA, CatB, and CatC), the sigma38-deficient P. putida lacked CatB. These results are consistent with previous findings that CatB is induced in stationary-phase.  相似文献   

9.
Several bacterial species carry in their genomes a so-called "mutagenesis" gene cluster encoding ImuB which is similar to Y-family DNA polymerases, and DnaE2 related to the catalytic subunit DnaE of Pol III. Y-family DNA polymerases are known to be involved in stationary-phase mutagenesis and DnaE2 homologues characterized so far have expressed a mutator phenotype. In this study, we raised a question about the involvement of ImuB and DnaE2 in stationary-phase mutagenesis. Here, we show that Pseudomonas putida ImuB and DnaE2 have antagonistic effects on stationary-phase mutagenesis. ImuB facilitated accumulation of stationary-phase mutants up to two-fold. In contrast to that, DnaE2 had no significant effect on emergence of 1-bp deletion mutants and moreover, it acted as an anti-mutator in accumulation of base substitution mutants in starving bacteria. Similar antagonistic effects of DnaE2 and ImuB on mutagenesis appeared also in UV-mutagenesis study. This data distinguishes the DnaE2 of P. putida from its homologues studied in other organisms.  相似文献   

10.
Mismatch repair (MMR) proteins actively inhibit recombination between diverged sequences in both prokaryotes and eukaryotes. Although the molecular basis of the antirecombination activity exerted by MMR proteins is unclear, it presumably involves the recognition of mismatches present in heteroduplex recombination intermediates. This recognition could be exerted during the initial stage of strand exchange, during the extension of heteroduplex DNA, or during the resolution of recombination intermediates. We previously used an assay system based on 350-bp inverted-repeat substrates to demonstrate that MMR proteins strongly inhibit mitotic recombination between diverged sequences in Saccharomyces cerevisiae. The assay system detects only those events that reverse the orientation of the region between the recombination substrates, which can occur as a result of either intrachromatid crossover or sister chromatid conversion. In the present study we sequenced the products of mitotic recombination between 94%-identical substrates in order to map gene conversion tracts in wild-type versus MMR-defective yeast strains. The sequence data indicate that (i) most recombination occurs via sister chromatid conversion and (ii) gene conversion tracts in an MMR-defective strain are significantly longer than those in an isogenic wild-type strain. The shortening of conversion tracts observed in a wild-type strain relative to an MMR-defective strain suggests that at least part of the antirecombination activity of MMR proteins derives from the blockage of heteroduplex extension in the presence of mismatches.  相似文献   

11.
Escherichia coli K12 and Salmonella typhimurium LT2 cells were stabilized during carbon starvation in the presence of peptidase-deficient mutant strains. The rate of loss of viability of the wild-type S. typhimurium strain was decreased an average of 2-fold, and the rate for the wild-type E. coli strain was decreased about 2.3-fold, when either was starved in the presence of the multiply peptidase-deficient S. typhimurium strain TN852; other peptidase-deficient strains exhibited similar stabilizing effects. Starving wild-type S. typhimurium LT2 cells utilized peptides excreted by the starving peptidase-deficient cells for protein synthesis, and, to a lesser extent, as respiratory substrates. Provision of free amino acids in steady-state levels to starving E. coli K12 cells in a cell recycle apparatus had a stabilizing effect similar to that of mixing with peptidase-deficient cells.  相似文献   

12.
13.
The postreplicative mismatch repair (MMR) system is important for removing mutational intermediates that are generated during DNA replication, especially those that arise as a result of DNA polymerase slippage in simple repeats. Here, we use a forward mutation assay to systematically examine the accumulation of frameshift mutations within mononucleotide runs of variable composition in wild-type and MMR-defective yeast strains. These studies demonstrate that (i) DNA polymerase slippage occurs more often in 10-cytosine/10-guanine (10C/10G) runs than in 10-adenine/10-thymine (10A/10T) runs, (ii) the MMR system removes frameshift intermediates in 10A/10T runs more efficiently than in 10C/10G runs, (iii) the MMR system removes -1 frameshift intermediates more efficiently than +1 intermediates in all 10-nucleotide runs, and (iv) the repair specificities of the Msh2p-Msh3p and Msh2p-Msh6p mismatch recognition complexes with respect to 1-nucleotide insertion/deletion loops vary dramatically as a function of run composition. These observations are relevant to issues of genome stability, with both the rates and types of mutations that accumulate in mononucleotide runs being influenced by the primary sequence of the run as well as by the status of the MMR system.  相似文献   

14.
Recently, we showed that the cytotoxic and mutagenic response in human cells to the model SN2 alkylating agent methyl methanesulfonate (MMS) can be modulated by the mismatch repair (MMR) pathway. That is, human cancer cell lines defective in MMR are more resistant to the cytotoxic effects of MMS exposure and suffer more induced mutations at the HPRT locus than MMR-proficient cell lines. Since MMS produces little O6-methylguanine (O6-meG), the observed hypermutability and resistance to cytotoxicity in MMR-defective cells likely results from lesions other than O6-meG. MMS produces a high yield of N7-methylguanine (N7-meG) and N3-methyladenine (N3-meA), which can lead to the formation of promutagenic abasic sites, and these lesions may be responsible for the observed cytotoxic and/or mutagenic effects of MMS. To further investigate the mechanism of MMS mutagenesis, two MMR-defective human cancer cell lines were treated with MMS and the frequency and the types of mutations produced at the HPRT locus were determined. MMS treatment (1.5 mM) produced a 1.6- and a 2.2-fold increase in mutations above spontaneous levels in HCT116 and DLD-1 cell lines, respectively. An average 3.7-fold increase in transversion mutations was observed, which accounted for greater than one-third of all induced mutations in both cell lines. In contrast, an average 1.6-fold increase was seen among transition mutations (the class expected from O-alkylation products). Since transversion mutations are not produced by O6-meG, these findings suggest that abasic sites may be the lesion responsible for a large proportion of MMS mutagenicity in MMR-defective cells. Furthermore, these data suggest the MMS-induced damage, either abasic site-inducing base alterations (i.e., N7-meG and N3-meA) or the resulting abasic sites themselves, may be substrates for recognition and/or repair by MMR proteins.  相似文献   

15.
Stress-promoted mutations that occur in nondividing cells (adaptive mutations) have been implicated strongly in causing genetic variability as well as in species survival and evolutionary processes. Oxidative stress-induced DNA damage has been associated with generation of adaptive His(+) and Met(+) but not Leu(+) revertants in strain Bacillus subtilis YB955 (hisC952 metB5 leuC427). Here we report that an interplay between MutY and MutSL (mismatch repair system [MMR]) plays a pivotal role in the production of adaptive Leu(+) revertants. Essentially, the genetic disruption of MutY dramatically reduced the reversion frequency to the leu allele in this model system. Moreover, the increased rate of adaptive Leu(+) revertants produced by a MutSL knockout strain was significantly diminished following mutY disruption. Interestingly, although the expression of mutY took place during growth and stationary phase and was not under the control of RecA, PerR, or σ(B), a null mutation in the mutSL operon increased the expression of mutY several times. Thus, in starved cells, saturation of the MMR system may induce the expression of mutY, disturbing the balance between MutY and MMR proteins and aiding in the production of types of mutations detected by reversion to leucine prototrophy. In conclusion, our results support the idea that MMR regulation of the mutagenic/antimutagenic properties of MutY promotes stationary-phase mutagenesis in B. subtilis cells.  相似文献   

16.
To understand the role of POL30 in mutation suppression, 11 Saccharomyces cerevisiae pol30 mutator mutants were characterized. These mutants were grouped based on their mutagenic defects. Many pol30 mutants harbor multiple mutagenic defects and were placed in more than one group. Group A mutations (pol30-52, -104, -108, and -126) caused defects in mismatch repair (MMR). These mutants exhibited mutation rates and spectra reminiscent of MMR-defective mutants and were defective in an in vivo MMR assay. The mutation rates of group A mutants were enhanced by a msh2 or a msh6 mutation, indicating that MMR deficiency is not the only mutagenic defect present. Group B mutants (pol30-45, -103, -105, -126, and -114) exhibited increased accumulation of either deletions alone or a combination of deletions and duplications (4 to 60 bp). All deletion and duplication breakpoints were flanked by 3 to 7 bp of imperfect direct repeats. Genetic analysis of one representative group B mutant, pol30-126, suggested polymerase slippage as the likely mutagenic mechanism. Group C mutants (pol30-100, -103, -105, -108, and -114) accumulated base substitutions and exhibited synergistic increases in mutation rate when combined with msh6 mutations, suggesting increased DNA polymerase misincorporation as a mutagenic defect. The synthetic lethality between a group A mutant, pol30-104, and rad52 was almost completely suppressed by the inactivation of MSH2. Moreover, pol30-104 caused a hyperrecombination phenotype that was partially suppressed by a msh2 mutation. These results suggest that pol30-104 strains accumulate DNA breaks in a MSH2-dependent manner.  相似文献   

17.
Mismatch repair (MMR) genes, such as Msh2, are classified as "mutator" genes, responsible for the microsatellite instability identified in many tumors. In the current study, the mutation frequency and mutational spectrum in thymic lymphoma arising in Msh2 deficient mice are investigated. Thymic lymphoma developed in Msh2-/- background displayed an eight to nine-fold increase in mutation frequency compared to the normal thymi in Msh2 deficient animals. Sequencing demonstrated significantly different mutational spectra between normal thymus tissue and thymic lymphomas in Msh2-/- mice (P=0.02). The tumor mutational spectrum is characterized by an increase in base substitutions occurring at A:T sites, and multiple mutations, as well as a minor increase in -1 frameshifts. We analyzed mutations in different parts of the tumors, and different regional hotspots could be identified. Several hotspot mutations that are a rare event in normal tissues were identified in the tumor tissues. We conclude that thymic lymphomas arising in Msh2 deficient genetic background are hypermutable and the altered mutational spectrum might be an indication of infidelity of DNA replication during tumorigenesis.  相似文献   

18.
Antimutator alleles indentify genes whose normal products are involved in spontaneous mutagenesis pathways. Mutant alleles of the recA and umuC genes of Escherichia coli, whose wild-type alleles are components of the inducible SOS response, were shown to cause a decrease in the level of spontaneous mutagenesis. Using a series of chromosomal mutant trp alleles, which detect point mutations, as a reversion assay, it was shown that the reduction in mutagenesis is limited to base-pair substitutions. Within the limited number of sites than could be examined, transversions at AT sites were the favored substitutions. Frameshift mutagenesis was slightly enhanced by a mutant recA allele and unchanged by a mutant umuC allele. The wild-type recA and umuC genes are involved in the same mutagenic base-pair substitution pathway, designated "SOS-dependent spontaneous mutagenesis" (SDSM), since a recAumuC strain showed the same degree and specificity of antimutator activity as either single mutant strain. The SDSM pathway is active only in the presence of oxygen, since wild-type, recA, and umuC strains all show the same levels of reduced spontaneous mutagenesis anaerobically. The SDSM pathway can function in starving/stationary cells and may, or may not, be operative in actively dividing cultures. We suggest that, in wild-type cells, SDSM results from basal levels of SOS activity during DNA synthesis. Mutations may result from synthesis past cryptic DNA lesions (targeted mutagenesis) and/or from mispairings during synthesis with a normal DNA template (untargeted mutagenesis). Since it occurs in chromosomal genes of wild-type cells, SDSM may be biologically significant for isolates of natural enteric bacterial populations where extended starvation is often a common mode of existence.  相似文献   

19.
Frameshift mutations occur when the coding region of a gene is altered by addition or deletion of a number of base pairs that is not a multiple of three. The occurrence of a deletion versus an insertion type of frameshift depends on the nature of the transient intermediate structure formed during DNA synthesis. Extrahelical bases on the template strand give rise to deletions, whereas extrahelical bases on the strand being synthesized produce insertions. We previously used reversion of a +1 frameshift mutation to analyze the role of the mismatch repair (MMR) machinery in correcting -1 frameshift intermediates within a defined region of the yeast LYS2 gene. In this study, we have used reversion of a -1 frameshift mutation within the same region of LYS2 to analyze the role of the MMR machinery in the correction of frameshift intermediates that give rise to insertion events. We found that insertion and deletion events occur at similar rates but that the reversion spectra are very different in both the wild-type and MMR-defective backgrounds. In addition, analysis of the +1 spectra revealed novel roles for Msh3p and Msh6p in removing specific types of frameshift intermediates.  相似文献   

20.
The physiological status of carbon-starved cells of the marine Vibrio sp. strain S14 has been investigated by the analysis of their immediate response to carbon and energy sources. During the first minute after glucose addition to 48-h-starved cells, the pools of ATP and GTP increased rapidly, and the [ATP]/[ADP] ratio reached the level typical for growing cells within 4 min. The total rates of RNA and protein synthesis increased initially but were inhibited 4 to 5 min after glucose addition by the induction of the stringent response. A mutation in the relA gene abolished stringent control during the recovery and significantly prolonged the lag phase, before the starved cells regrew, after the addition of a single source of carbon. However, both the wild-type and the relA cells regrew without a significant lag phase when given glucose supplemented with amino acids. On the basis of these results, it is suggested that carbon-starved cells are deficient in amino acid biosynthesis and that ppGpp and the stringent response are involved in overcoming this deficiency, presumably by depressing the synthesis of amino acid biosynthetic enzymes. Furthermore, the data suggest that the starved cells primarily are starved for energy, and evidence is presented that the step-up in the rate of protein synthesis after refeeding is partially dependent on de novo RNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号