首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we replaced the basic amine function of the known histamine H(3) receptor agonists imbutamine or immepip with non-basic alcohol or hydrocarbon moieties. All compounds in this study show a moderate to high affinity for the cloned human H(3) receptor and, unexpectedly, almost all of them act as potent agonists. Moreover, in the alcohol series, we consistently observed an increased selectivity for the human H(3) receptor over the human H(4) receptor, but none of the compounds in this series possess increased affinity and functional activity compared to their alkylamine congeners. In this new series of compounds VUF5657, 5-(1H-imidazol-4-yl)-pentan-1-ol, is the most potent histamine H(3) receptor agonist (pK(i) = 8.0 and pEC(50) = 8.1) with a 320-fold selectivity at the human H(3) receptor over the human H(4) receptor.  相似文献   

2.
The synthesis and biological evaluation of novel antagonists of the rat H(3) receptor are described. These compounds differ from prototypical H(3) antagonists in that they do not contain an imidazole moiety, but rather a substituted aminopyrrolidine moiety. A systematic modification of the substituents on the aminopyrrolidine ring was performed using pre-formatted precursor sets, where applicable, to afford several compounds with high affinity and selectivity for the H(3) receptor.  相似文献   

3.
An extended series of alkyl carboxamide analogs of N-(piperidinyl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl- 1H-pyrazole-3-carboxamide (SR141716; 5) was synthesized. Each compound was tested for its ability to displace the prototypical cannabinoid ligands ([3H]CP-55,940, [3H]2; [3H]SR141716, [3H]5; and [3H]WIN55212-2, [3H]3), and selected compounds were further characterized by determining their ability to affect guanosine 5'-triphosphate (GTP)-gamma-[35S] binding and their effects in the mouse vas deferens assay. This systematic evaluation has resulted in the discovery of novel compounds with unique binding properties at the central cannabinoid receptor (CB1) and distinctive pharmacological activities in CB1 receptor tissue preparations. Specifically, compounds with nanomolar affinity which are able to fully displace [3H]5 and [3H]2, but unable to displace [3H]3 at similar concentrations, have been synthesized. This selectivity in ligand displacement is unprecedented, in that previously, compounds in every structural class of cannabinoid ligands had always been shown to displace each of these radioligands in a competitive fashion. Furthermore, the selectivity of these compounds appears to impart unique pharmacological properties when tested in a mouse vas deferens assay for CB1 receptor antagonism.  相似文献   

4.
Previous studies have shown that several imidazole derivatives possess affinity to histamine H(3) and H(4) receptors. Continuing our study on structural requirements responsible for affinity and selectivity for H(3)/H(4) receptor subtypes, two series of 3-(1H-imidazol-4-yl)propyl carbamates were prepared: a series of unsaturated alkyl derivatives (1-9) and a series possessing a cycloalkyl group different distances to the carbamate moiety (10-13). The compounds were tested for their affinities at the human histamine H(3) receptor, stably expressed in CHO-K1 cells. Compounds 1, 2, 5-7, 10-13 were investigated for their affinities at the human histamine H(4) receptor co-expressed with Gα(i2) and Gβ(1)γ(2) subunits in Sf9 cells. To expand the pharmacological profile, compounds were further tested for their H(3) receptor antagonist activity on guinea pig ileum and in vivo after oral administration to mice. All tested compounds exhibited good affinity for the human histamine H(3) receptor with K(i) values in the range from 14 to 194nM. All compounds were active in vivo after peroral administration (p.o.) to Swiss mice, thus demonstrating their ability to cross the blood-brain barrier. The most potent H(3) receptor ligand of these series was compound 5, 3-(1H-imidazol-4-yl)propyl pent-4-enylcarbamate with the highest affinity (K(i)=14nM). Additionally, compound 3 showed remarkable central nervous system (CNS) H(3)R activity, increasing the N(τ)-methylhistamine levels in mice with an ED(50) value of 0.55mg/kg, p.o. evidencing therefore, a twofold increase of inverse agonist/antagonist potency compared to the reference inverse agonist/antagonist thioperamide. In this study, the imidazole propyloxy carbamate moiety was kept constant. The different lipophilic moieties connected to the carbamate functionality in the eastern part of the molecule had a range of influences on the human H(4) receptor affinity (154-1326nM).  相似文献   

5.
A series of tricyclic carboxylic acids having 6-amino-pyrimidine-2,4(1H,3H)-dione with piperazino or homopiperazino moiety linked by propylene, were synthesized and evaluated for their affinity toward human histamine H(1) receptor and Caco-2 cell permeability. Selected compounds were further evaluated for their oral anti-histaminic activity in mice, bioavailability in rats, and their anti-inflammatory activity in mice OVA-induced biphasic cutaneous reaction model. Among the compounds tested, dibenzoxazepine carboxylic acid 13b showed both histamine H(1) receptor antagonistic activity and anti-inflammatory activity in vivo. In addition, 13b exhibited low affinity toward α(1) receptor and low occupancy of H(1) receptor in the brain. It is therefore, believed that 13b is a potential candidate for development as 3rd generation anti-histamine.  相似文献   

6.
The synthesis and biological evaluation of novel cycloheptaquinoline antagonists of the human H(3) receptor are described. Two series of compounds, bearing either an amino substituent or an alkyne linker at the 11-position, were investigated. Modifications of the amino substituents, optimization of chain length and the effect of conformational restraints are described. Several compounds with high affinity and selectivity for the H(3) receptor were discovered.  相似文献   

7.
Recent bioisoteric replacements in histamine H3 receptor ligands with an exchange of the imidazole moiety by a piperidino group as well as of the trimethylene chain in 4-((3-phenoxy)propyl)-lH-imidazole derivatives (proxifan class) by an alpha,alpha'-xylendiyl linker represents the starting point in the development of 1-(4-(phenoxymethyl)benzyl)piperidines as a new class of nonimidazole histamine H3 receptor antagonists. According to different strategies in optimization of imidazole-containing antagonists the central benzyl phenyl ether moiety was replaced by numerous other polar functionalities. Additionally, the ortho- and meta-analogues of the lead were synthesized to determine the influence of the position of the piperidinomethyl substituent. The new compounds were tested in an in vitro binding assay for their affinities for cloned human H3 receptors stably expressed in CHO-K1 cells and for their oral in vivo potencies brain in a functional screening assay in the brain of mice. Additionally, activities of selected compounds were determined in the guinea-pig ileum functional test model. In contrast to the analogues ortho-substituted compounds all other compounds maintained respectable affinities for the human H3 receptor (-log Ki values 6.3-7.5). Despite the results from other classes of compounds the 4-methyl substituted derivatives generally displayed higher affinities than the corresponding 4-chloro substituted compounds. In vivo only the inverse phenyl benzyl ether (3) showed worthwhile antagonist potencies.  相似文献   

8.
The synthesis and biological activity of a new series of 2-aryloxymethylmorpholine histamine H(3) antagonists is described. The new compounds are high affinity histamine H(3) ligands that penetrate the CNS and occupy the histamine H(3) receptor in rat brain.  相似文献   

9.
The combination of antagonism at histamine H(3) receptors and inhibition of acetylcholinesterase has been recently proposed as an approach to devise putative new therapeutic agents for cognitive diseases. The 4,4'-biphenyl fragment has been reported by us as a rigid scaffold leading to potent and selective non-imidazole H(3)-antagonists. Starting from these premises, the current work presents an expanded series of histamine H(3) receptor antagonists, characterized by a central 4,4'-biphenyl scaffold, where the structure-activity profile of both mono-basic and di-basic compounds is further explored and their ability to inhibit rat brain cholinesterase activity is determined. The steric properties and basicity of the terminal groups were modulated in symmetrical compounds, carrying identical substituents, and in asymmetrical compounds, having a piperidine ring at one end and different groups at the other. The length of the linker connecting the biphenyl scaffold to the terminal groups was also modulated. Binding studies at rat and human H(3) receptors evidenced the highest binding affinities for di-basic compounds, in the order of nM concentrations, and that the steric requirements for the two terminal groups are different. Many potent compounds showed good selectivity profiles over the other histamine receptors. Interestingly, some derivatives displayed a moderate ability to inhibit rat brain cholinesterase, for example compound 12 (1-[2-(4'-piperidinomethyl-biphenyl-4-yl)ethyl]piperidine) has a pIC(50)=5.96 for cholinesterase inhibition and high H(3) receptor binding affinity and antagonist potency (pK(i)=8.70; pK(B)=9.28). These compounds can be considered as rigid analogs of a recently reported class of dual-acting compounds and as a promising starting point for the design of new H(3)-antagonists with anti-cholinesterase activity.  相似文献   

10.
Omega-piperidinoalkanamine derivatives with fluorescent moieties (2-cyanoisoindol-1-yl, 7-nitrobenzofurazan-4-yl) have been synthesized starting from piperidine in three steps. The compounds display moderate to good histamine hH(3) receptor affinities with K(i) values ranging from 178 to 11nM. The new compounds may act as tools for identification and understanding of the binding site on the histamine H(3) receptor.  相似文献   

11.
In this study, a novel series of imidazole-containing compounds with dual properties, that is, inhibitory potency at the enzyme histamine N(tau)-methyltransferase (HMT) and antagonist potency at histamine H(3) receptors was designed and synthesized. Pharmacologically, these new hybrid drugs were evaluated in functional assays for their inhibitory potencies at rat kidney HMT and for their antagonist activities on synaptosomes of rat cerebral cortex. For selected compounds, binding affinities at recombinant human histamine H(3) receptors were determined. The first compounds (1-10) of the series proved to be H(3) receptor ligands of high potency at rat synaptosomes or of high binding affinity at human H(3) receptors, respectively, but of only moderate activity as inhibitors of rat kidney HMT. In contrast, aminoquinoline- or tetrahydroacridine-containing derivatives 11-17 also displayed HMT inhibitory potency in the nanomolar concentration range. Preliminary data from molecular modeling investigations showed that the imidazole derivative 15 and the HMT inhibitor quinacrine possess identical binding areas. The most interesting compound (14) is simultaneously a highly potent H(3) receptor ligand (K(i)=4.1nM) and a highly potent HMT inhibitor (IC(50)=24nM), which makes this derivative a valuable pharmacological tool for further development.  相似文献   

12.
Binding of [3H]AMPA to rat brain membranes was investigated. The binding was saturable and reversible at physiological pH. Computer-aided Scatchard analysis of the binding data, as determined by using L-glutamic acid (L-GLU) to define nonspecific binding, suggested the presence of two independent binding sites, with KDS of 9 and 2440 nM, respectively. Additional freezing, thawing and washing sequences gave membranes with only one binding site, with a KD of 278 nM. [3H]AMPA binding exhibited the highest level in striatal membranes. A series of analogues of GLU and aspartic acid (ASP) were tested as inhibitors of [3H]AMPA binding. L-ASP and compounds which interact predominantly with N-methyl-D-aspartic acid (NMDA) receptor sites were inactive as inhibitors of [3H]AMPA binding, whereas L-GLU and compounds which interact predominantly with glutamic acid diethyl ester receptor sites were inhibitors with the same order of potency as that shown by the excitatory action in vivo. The result suggests that [3H]AMPA might represent binding to an excitatory GLU receptor.  相似文献   

13.
Fenoldopam (SKF 82526), a dopamine agonist which exhibits D-1 receptor subtype selectivity, was evaluated as a radioligand for this receptor subtype. In saturation studies in rat striatal membrane preparations, [3H]-fenoldopam appeared to label a single binding site with a KD of 2.3 +/- 0.1 nM and a Bmax of 590 +/- 40 fmoles/mg protein. In competition binding experiments, binding was shown to be stereoselective, and rank ordering of affinities of dopaminergic and non-dopaminergic compounds closely correlated with potencies of these compounds in stimulating or inhibiting dopamine-sensitive adenylate cyclase (D-1) and in binding to D-1 sites labelled with the antagonist [3H]-cis-flupenthixol. The most potent competitors were the recently identified D-1 selective antagonists, SCH 23390 and SKF R-83566. [3H]-Fenoldopam was also used to assess agonist/D-1 receptor interactions. The results suggest that [3H]-fenoldopam is a useful and selective agonist radioligand for the D-1 receptor.  相似文献   

14.
Nuclear interactions of alpha-zearalanol (P-1496) and oestradiol-17 beta (E2) were compared following binding of these compounds to cytosolic oestrogen receptor. A single dose of P-1496 (400 micrograms) or E2 (25 micrograms) given subcutaneously to ovariectomized female rats resulted in two peaks of nuclear oestrogen-receptor concentrations at approx. 0.5 and 4.5 h and showed no qualitative differences between the two compounds. Under in vitro cell-free conditions, [3H]P-1496 was also able to cause oestrogen receptor retention by liver nuclei. Moreover, analysis of salt-extracted nuclear-bound receptor on sucrose gradients gave similar results to those obtained using [3H]E2 with a main peak of radioactivity sedimenting at 5S. Using [3H]P-1496, the time-course of nuclear retention was examined in both males and females. These studies showed no sex difference with nuclear-bound radioactivity reaching a plateau between 20-30 min. The ability of oestrogen-receptor complexes to bind to DNA was examined by DNA-cellulose chromatography. Using either [3H]E2 or [3H]P-1496 as the ligand, qualitative sex differences were shown in the number of peaks present. A comparison of chromatographic patterns obtained with the two ligands suggested close similarities in non-covalent DNA binding between the two compounds, in both males and females. These studies indicate that P-1496 is capable of causing retention of oestrogen receptor by liver nuclei and it binds to DNA in a manner similar to E2. Hence, our data do not explain the marked difference in oestrogenic activity observed in vivo between E2 and P-1496.  相似文献   

15.
1-[2-(4-Aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)piperazine (PAPP) inhibits [3H]5-hydroxytryptamine (5-HT, serotonin) binding to 5-HT1A and 5-HT1B sites in rat brain with apparent equilibrium dissociation constants (KD) of 2.9 and 328 nM, respectively. [3H]PAPP was synthesized, its binding to central serotonin receptors was examined, and its potential usefulness as a 5-HT1A receptor radioligand was evaluated. With either 10 microM 5-HT or 1 microM 8-hydroxy-2-(di-n-propylamino)tetralin to define nonspecific binding, [3H]PAPP bound to a single class of sites in rat cortical membranes with a KD of 1.6 nM and a maximal binding density (Bmax) of 162 fmol/mg of protein. d-Lysergic acid diethylamide and 5-HT, two nonselective inhibitors of [3H]5-HT binding, displaced 1 nM [3H]PAPP with a potency that matched their affinity for 5-HT1 receptors. Spiperone and 8-hydroxy-2-(di-n-propylamino)tetralin, two compounds that discriminate [3H]5-HT binding to 5-HT1A and 5-HT1B sites, inhibited [3H]PAPP binding in accordance with their much higher affinities for the 5-HT1A receptor subtype. Furthermore, the ability of N-(m-trifluoromethylphenyl)piperazine and ketanserin to inhibit [3H]PAPP binding reflected their low affinities for the 5-HT1A receptor. Several nonserotonergic compounds were also found to be relatively poor displacers of [3H]PAPP binding. The regional distribution of serotonin-sensitive [3H]PAPP sites correlated with the densities of 5-HT1A receptors in the cortex, hippocampus, corpus striatum, and cerebellum of the rat. These results indicate that [3H]PAPP binds selectively and with high affinity to 5-HT1A receptor sites in rat brain.  相似文献   

16.
Novel, achiral 1H-1,3,5-benzotriazepine-2,4(3H,5H)-diones have been prepared and structurally characterized. These compounds are potent CCK(2) receptor antagonists that display a high degree of selectivity over CCK(1) receptors.  相似文献   

17.
A series of novel 3-substituted quinoxalin-2-carboxamides were designed as per the pharmacophoric requirement for 5-HT(3) receptor antagonists and prepared by microwave irradiation and also by conventional method. The compounds were characterized by spectral data (IR, (1)H NMR, and MS) and the purity was ascertained by microanalysis. The synthesized compounds were evaluated for 5-HT(3) antagonisms in longitudinal muscle-myenteric plexus preparation from guinea pig ileum against 5-HT(3) agonist, 2-methyl-5-HT. Among the test compounds, N-{3-[(4-methylpiperazin-1-yl)methyl]-4-hydroxyphenyl}-3-methoxyquinoxalin-2-carboxamide 4e showed most favorable 5-HT(3) receptor antagonism.  相似文献   

18.
4-((1H-Imidazol-4-yl)methyl)-1-aryl-piperazine and piperidine derivatives were designed and synthesized as candidate human histamine type 3 agonists. The piperazine derivatives were found to have low (or no) affinity for human histamine H3 receptor, whereas the piperidine derivatives showed moderate to high affinity, and their agonistic activity was greatly influenced by substituents on the aromatic ring. Among the piperidine-containing compounds, 17d and 17h were potent human histamine H3 receptor agonists with high selectivity over the closely related human H4 receptor. Our results indicate that appropriate conformational restriction, that is, by the piperidine spacer moiety, favors specific binding to the human histamine H3 receptor.  相似文献   

19.
We report on the synthesis, biological evaluation and structure-activity relationships for a series of 3-benzazepine derivatives as 5-HT(2C) receptor agonists. The compounds were evaluated in functional assays measuring [3H] phosphoinositol turnover in HEK-293 cells transiently transfected with h5-HT(2C), h5-HT(2A) or h5-HT(2B) receptors. Several compounds are shown to be potent and selective 5-HT(2C) receptor agonists, which decrease food intake in a rat feeding model.  相似文献   

20.
SAR studies for novel non-imidazole containing H(3) receptor antagonists with high potency and selectivity for rat H(3) receptors are described. A high throughput screening lead, A-923, was further elaborated in a systematic manner to clarify a pharmacophore for this class of aryloxyalkyl piperazine based compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号