首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyanide binding to bovine heart cytochrome c oxidase at five redox levels has been investigated by use of infrared and visible-Soret spectra. A C-N stretch band permits identification of the metal ion to which the CN- is bound and the oxidation state of the metal. Non-intrinsic Cu, if present, is detected as a cyanide complex. Bands can be assigned to Cu+CN at 2093 cm-1, Cu2+CN at 2151 or 2165 cm-1, Fe3+CN at 2131 cm-1, and Fe2+CN at 2058 cm-1. Fe2+CN is found only when the enzyme is fully reduced whereas the reduced Cu+CN occurs in 2-, 3-, and 4-electron reduced species. A band for Fe3+CN is not found for the complex of fully oxidized enzyme but is for all partially reduced species. Cu2+CN occurs in both fully oxidized and 1-electron-reduced oxidase. CO displaces the CN- at Fe2+ to give a C-O band at 1963.5 cm-1 but does not displace the CN- at Cu+. Another metal site, noted by a band at 2042 cm-1, is accessible only in fully reduced enzyme and may represent Zn2+ or another Cu+. Binding of either CN- or CO may induce electron redistribution among metal centers. The extraordinary narrowness of ligand infrared bands indicates very little mobility of the components that line the O2 reduction site, a property of potential advantage for enzyme catalysis. The infrared evidence that CN- can bind to both Fe and Cu supports the possibility of an O2 reduction mechanism in which an intermediate with a mu-peroxo bridge between Fe and Cu is formed. On the other hand, the apparent independence of Fe and Cu ligand-binding sites makes a heme hydroperoxide (Fe-O-O-H) intermediate an attractive alternative to the formation an Fe-O-O-Cu linkage.  相似文献   

2.
Cytochrome c oxidase isolated from bovine heart was crystallized in the fully reduced carbon monoxide (CO)-bound form. To evaluate the structure of the O2 reaction site in crystals and in solution, the bound C-O stretch infrared band in protein crystals was compared with the band for protein solution. In solution, the C-O stretch band could be deconvoluted into two extremely narrow bands, one at 1963.6 cm-1 with delta v1/2 = 3.4 cm-1 of 60% Gaussian/40% Lorentzian character represented 86% of the total band area and the other at 1960.3 cm-1 with delta v1/2 = 3.0 cm-1 of 47% Gaussian/53% Lorentzian character represented 14% of the total band area. The crystals exhibited two deconvoluted C-O infrared bands having very similar band parameters with those in solution. These findings support the presence of two structurally similar conformers in both crystals and solution. Thus crystallization of this enzyme does not affect the structure at the CO-binding site to as great extent as has been noted for myoglobin and hemoglobin carbonyls, indicating that the active (CO- or O2-binding) site of cytochrome c oxidase must be conformationally very stable and highly ordered compared to other hemoproteins such as hemoglobin.  相似文献   

3.
Carbon monoxide bound to myoglobin and cytochrome c oxidase in separated adult rat heart myocytes has been observed with Fourier transform IR spectroscopy at low temperatures. CO complexes of these two proteins can be spectrally separated through temperature manipulation of the relaxation of the photolyzed systems. Photolyzed carboxymyoglobin relaxes very rapidly above 80 K, whereas the CO photolyzed from cytochrome a3 associates with CuB and relaxes very slowly below 140 K. Cytochrome c oxidase is found to be present in two major molecular forms which we designate alpha and beta. Each form contains an a3Fe and its associated CuB which we observe by their CO complexes. The predominant FeCO band, the alpha form of cytochrome oxidase, is similar to that previously seen in beef heart mitochondria, but with a slightly larger activation enthalpy, delta H = 46 kJ/mol. At least one of the beta forms is similar, but two have not been observed in beef heart mitochondria. Upon photolysis of alpha-FeCO, the alpha-CuCO species is formed. This band splits into two at low temperature. Up to half of the FeCO band area of the intact myocytes is distributed among three or more minor species (beta forms). The beta-FeCO bands all appear to be associated with only one beta-CuCO band which does not split at low temperature. After photo-dissociation of CO, the beta forms relax considerably faster than the alpha form, achieving 50% recombination in 10% of the time required for the alpha form. In a tissue slice from an opossum heart exposed to CO, we observed alpha and beta forms of cytochrome oxidase very similar to those in the rat heart myocytes. The cause of the differences between the alpha and beta forms of the enzyme is unknown, but their possible role in the control of respiration is discussed. Carboxymyoglobin contained within intact rat heart myocytes was very similar to sperm whale carboxymyoglobin, but with a much smaller amount of the lower frequency minor component.  相似文献   

4.
Infrared spectroscopy of a single cell--the human erythrocyte   总被引:1,自引:0,他引:1  
Methods for obtaining the infrared spectrum of a single erythrocyte by infrared microscopy have been developed. The spectrum contains the amide I, II, and III bands characteristic of protein secondary structure near 1650, 1550, and 1300 cm-1, respectively. Bound carbon monoxide exhibits a readily measured band at 1951 cm-1 for 12C16O and 1907 cm-1 for 13C16O. Both amide and CO bands are similar to those found for purified hemoglobin A. Spectra can be obtained in H2O or D2O media under physiologically relevant conditions. Single cell infrared spectroscopy (SCIR) permits the qualitative and quantitative determination of differences among individual red cells. These results suggest many potential applications for SCIR for the measurements of properties of individual cells at the molecular level under physiologically relevant conditions.  相似文献   

5.
Carbon monoxide bound to cytochrome c oxidase has been observed by Fourier transform infrared spectroscopy between 10 K and 280 K in the dark and during and after continuous photolysis. CO bound to a3Fe absorbs near 1963 cm-1, with minor bands at lower frequencies. Photolysis at low temperatures transfers CO to CuB, with the major component near 2062 cm-1 and a minor one near 2043 cm-1. Vibrational absorptions are assigned by comparison with heme and copper carbonyls, by frequency dependence of all bands on the isotopic mass of CO, and by similar behavior of major and minor components with photolysis and relaxation kinetics as a function of temperature. Reformation of a3FeCO after photolysis is an apparent first order process below 210 K with a distribution of rate constants. The kinetics are well described by a power law. Arrhenius behavior is followed between 140 K and 180 K to yield a peak activation enthalpy of 40.3 kJ/mol and a distribution in g(H) = 2.56 kJ/mol (full width at half-maximum). The major component of a3FeCO shows a very narrow CO absorption band (full width at half-maximum = 2.4 cm-1), while that of CuBCO shows a broader CO absorption (full width at half-maximum = 6 cm-1). These data indicate that in the reduced carbon monoxide complex, a3FeCO is in highly ordered nonpolar surroundings sufficiently separated from CuB that it is not perturbed by motion of the latter, while CuBCO is in less ordered, more flexible surroundings.  相似文献   

6.
Ground state near-infrared absorption spectra of fully reduced unliganded and fully reduced CO (a2+ CuA+ a3(2+)-CO CuB+) cytochrome c oxidase were investigated. Flash-photolysis time-resolved absorption difference spectra of the mixed-valence (a3+ CuA2+ a3(2+)-CO CuB+) and the fully reduced CO complexes were also studied. A band near 785 nm (epsilon approximately 50 M-1cm-1) was observed in the fully reduced unliganded enzyme and the CO photoproducts. The time-resolved 785 nm band disappeared on the same timescale (t1/2 approximately 7 ms) as CO recombined with cytochrome a3(2+). This band, which is attributed to the unliganded five coordinate ferrous cytochrome a3(2+), has some characteristics of band III in deoxy-hemoglobin and deoxy-myoglobin. A second band was observed at approximately 710 nm (epsilon approximately 80 M-1cm-1) in the fully reduced unliganded and the fully reduced CO complexes. This band, which we assign to the low spin ferrous cytochrome a, appears to be affected by the ligation state at the cytochrome a3(2+) site.  相似文献   

7.
Infrared methods permit detection of CO within tissue under nearly physiological conditions. The CO stretch bands exhibit frequencies, band widths and intensities characteristic of the particular binding site with areas related to concentrations. For small volumes (< 1 ml) of whole blood the % HbCO as well as certain abnormal Hbs are rapidly determined. In heart muscle, CO bound to cytochrome oxidase, hemoglobin and myoglobin is observed at 1963, 1951 and 1944 cm?1 respectively, frequencies characteristic of the isolated proteins. Infrared methods discriminate among possible CO binding sites (hemeprotein or other) within any intact tissue. Many other infrared active molecules or groups could also be studied in tissue by infrared spectroscopy.  相似文献   

8.
A survey was made of the capacity of mitochondria isolated from a number of different tissues and species to accumulate Ca(2+) from the suspending medium during electron transport. The species examined included the rat, mouse, rabbit, hamster, guinea pig, cow, chicken, turtle, blowfly, yeast and Neurospora crassa. The tissues examined included vertebrate liver, kidney, brain, heart, spleen, thyroid and adrenal cortex, and the flight muscle of the blowfly. The mitochondria from all vertebrate tissues examined showed: (a) stimulation of State 4 respiration by added Ca(2+) (Ca(2+)/~ activation ratio about 2.0), accompanied by accumulation of Ca(2+) and ejection of H(+), with a H(+)/Ca(2+) ratio about 1.0; (b) a requirement of phosphate for accumulation of large amounts of Ca(2+); (c) respiration-independent high-affinity binding sites for Ca(2+); (d) endogenous Ca(2+), which is largely released by uncoupling agents. However, mitochondria from yeast and blowfly flight muscle are unable to accumulate Ca(2+) in a respiration-dependent process and possess no high-affinity Ca(2+)-binding sites. These findings support the view that the high-affinity sites represent the ligand-binding sites of a specific Ca(2+) ;permease' or transport system in the membrane. The relatively high affinity for Ca(2+), which equals or exceeds the affinity for ADP, and the generally uniform characteristics of Ca(2+) transport in all the vertebrate mitochondria tested strongly suggest that respiration-linked Ca(2+) accumulation plays a general and fundamental role in vertebrate cell physiology.  相似文献   

9.
C H Barlow  P I Ohlsson  K G Paul 《Biochemistry》1976,15(10):2225-2229
Infrared difference spectra, FeIIICO vs. FeIII of horseradish peroxidase isoenzymes A2 and C were recorded from 2000 to 1800 cm-1. Under alkaline conditions, pH 9, both isoenzymes exhibit two CO stretching bands, at 1938 and 1925 cm-1 for A2 and at 1933 and 1929 cm-1 for C. As the pH is lowered the low-frequency band for each isoenzyme decreases in intensity with a concommitant appearance and increase in intensity of a band at 1906 and 1905 cm-1 for the A2 and C isoenzymes, respectively. These changes conform to pK values of 6.7 for the A2 and 8.8 for the C isoenzymes of horseradish peroxidase. The interpretation of the infrared results was simplified by the observation that a linear relationship exists between the redox potential, Em7, for the FeIII/FeII system vs. the infrared CO stretching frequency, vCO, for cytochrome a3, hemoglobin, myoglobin, and cytochrome P-450 cam with substrate. This relationship suggests that the primary force altering vCO in these heme proteins is a variation in electron density at the heme iron and not direct protein interactions with the CO ligand. The horseradish peroxidase infrared bands in the 1930-cm-1 region correlate well with this relationship. The large deviation of the 1905-cm-1 band from the linear relationship and its dependence upon hydrogen ion concentration are consistent with horseradish peroxidase having a single CO binding site which can hold in two geometries, one of which contains an amino acid moiety capable of forming a hydrogen bond to the carbonyl oxygen.  相似文献   

10.
W J Ingledew  M Bacon  P R Rich 《FEBS letters》1992,305(3):167-170
The bacterial quinol oxidase, cytochrome o, is an enzyme which is highly analogous to the better known cytochrome c oxidase, cytochrome aa3, but with the important difference that it lacks the near infra-red absorbing pigment CuA. In this article we report an absorption band in the near IR spectrum of cytochrome o with a maximal absorption at 758 nm, and which is attributable to the ferrous high-spin haem. The 758 nm band has an extinction coefficient of 0.2-0.3 mM-1.cm-1 at 758-800 nm. This region in cytochrome aa3 is dominated by the CuA absorption. The 758 nm absorption is lost on addition of CO or cyanide to the reduced enzyme. The carbon monoxide compound of cytochrome o also has absorbance bands in the near infra-red, and these may be attributable to a low-spin ferrous haem compound.  相似文献   

11.
Free Ca2+ was shown to inhibit the NAD+-isocitrate dehydrogenase from blowfly flight muscle mitochondria. Inhibition by free Ca2+ concentrations of 40 microM or greater was found in the absence or presence of ADP and citrate, two known activators of the enzyme. Calcium decreased the affinity of the enzyme for its substrate, the magnesium DL-isocitrate chelate; no change in the apparent V of the reaction was observed. Calcium was inhibitory when activity was measured in the presence of fixed concentrations of magnesium DL-isocitrate chelate in the presence of several fixed concentrations of either free isocitrate3-, an activator, or free Mg2+, an inhibitor of the enzyme. That NAD+-isocitrate dehydrogenase from blowfly flight muscle mitochondria was not activated by micromolar free Ca2+ is consistent with the view that calcium does not play a role in regulating the flux through the tricarboxylate cycle in this species.  相似文献   

12.
A substrate-specific calmodulin-dependent myosin light-chain kinase (MLCK) was purified 45,000-fold to near homogeneity from bovine brain in 12% yield. Bovine brain MLCK phosphorylates a serine residue in the isolated turkey gizzard myosin light chain (MLC), with a specific activity of 1.8 mumol/min per mg of enzyme. The regulatory MLC present in intact gizzard myosin is also phosphorylated by the enzyme. The Mr-19,000 rabbit skeletal-muscle MLC is a substrate; however, the rate of its phosphorylation is at best 30% of that obtained with turkey gizzard MLC. Phosphorylation of all other protein substrates tested is less than 1% of that observed with gizzard MLC as substrate. SDS/polyacrylamide-gel electrophoresis of purified MLCK reveals the presence of a major protein band with an apparent Mr of 152000, which is capable of binding 125I-calmodulin in a Ca2+-dependent manner. Phosphorylation of MLCK by the catalytic subunit of cyclic-AMP-dependent protein kinase results in the incorporation of phosphate into the Mr-152,000 protein band and a marked decrease in the affinity of MLCK for calmodulin. The presence of Ca2+ and calmodulin inhibits the phosphorylation of the enzyme. Bovine brain MLCK appears similar to MLCKs isolated from platelets and various forms of muscle.  相似文献   

13.
Second derivative absorption spectra are reported for the aa3-cytochrome c oxidase from bovine cardiac mitochondria, the aa3-600 ubiquinol oxidase from Bacillus subtilis, the ba3-cytochrome c oxidase from Thermus thermophilis, and the aco-cytochrome c oxidase from Bacillus YN-2000. Together these enzymes provide a range of cofactor combinations that allow us to unequivocally identify the origin of the 450-nm absorption band of the terminal oxidases as the 6-coordinate low-spin heme, cytochrome a. The spectrum of the aco-cytochrome c oxidase further establishes that the split Soret band of cytochrome a, with features at 443 and 450 nm, is common to all forms of the enzyme containing ferrocytochrome a and does not depend on ligand occupancy at the other heme cofactor as previously suggested. To test the universality of this Soret band splitting for 6-coordinate low-spin heme A systems, we have reconstituted purified heme A with the apo forms of the heme binding proteins, hemopexin, histidine-proline-rich glycoprotein and the H64V/V68H double mutant of human myoglobin. All 3 proteins bound the heme A as a (bis)histidine complex, as judged by optical and resonance Raman spectroscopy. In the ferroheme A forms, none of these proteins displayed evidence of Soret band splitting. Heme A-(bis)imidazole in aqueous detergent solution likewise failed to display Soret band splitting. When the cyanide-inhibited mixed-valence form of the bovine enzyme was partially denatured by chemical or thermal means, the split Soret transition of cytochrome a collapsed into a single band at 443 nm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The aa(3)-type cytochrome c oxidases from mitochondria and bacteria contain a cation-binding site located in subunit I near heme a. In the oxidases from Paracoccus denitrificans or Rhodobacter sphaeroides, the site is occupied by tightly bound calcium, whereas the mitochondrial oxidase binds reversibly calcium or sodium that compete with each other. The functional role of the site has not yet been established. D477A mutation in subunit I of P. denitrificans oxidase converts the cation-binding site to a mitochondrial-type form that binds reversibly calcium and sodium ions [Pfitzner, U., Kirichenko, A., et al. (1999) FEBS Lett. 456, 365-369]. We have studied reversible cation binding with P. denitrificans D477A oxidase and compared it with that in bovine enzyme. In bovine oxidase, one Ca(2+) competes with two Na(+) for the binding, indicating the presence of two Na(+)-binding sites in the enzyme, Na(+)((1)) and Na(+)((2)). In contrast, the D477A mutant of COX from P. denitrificans reveals competition of Ca(2+) (K(d) = 1 microM) with only one sodium ion (K(d) = 4 mM). The second binding site for Na(+) in bovine oxidase is proposed to involve D442, homologous to D477 in P. denitrificans oxidase. A putative place for Na(+)((2)) in subunit I of bovine oxidase has been found with the aid of structure modeling located 7.4 A from the bound Na(+)((1)) . Na(+)((2)) interacts with a cluster of residues forming an exit part of the so-called H-proton channel, including D51 and S441.  相似文献   

15.
Interactions of azide ion with bovine heart cytochrome c oxidase (CcO) at five redox levels (IV) to (0), obtained by zero to four electron reduction of fully oxidized enzyme CcO(IV), were monitored by infrared and visible/Soret spectra. Partially reduced CcO gave three azide asymmetric stretch band at 2040, 2016, and 2004 cm-1 for CcO(III)N3 and two at 2040 and 2016 cm-1 for CcO(II)N3 and CcO(I)N3. Resting CcO(IV) reacts with N3- to give one band at 2041 cm-1 assigned to CuB2+N3 and another at 2051 cm-1 to N3- that is associated with protein but is not bound to a metal ion. At high azide concentrations the weak association of many azide molecules with non-metal protein sites was observed at all redox levels. These findings provide direct evidence for 1) N3- binding to CuB as well as Fea3 in partially reduced enzyme, but no binding to Fea3 in fully oxidized enzyme and no binding to either metal in fully reduced enzyme; 2) a long range effect of the oxidation state of Fea or CuA on ligand binding at heme a3, but not at CuB; and 3) an insensitivity of either Fea3 or CuB ligand site to changes in ligand or oxidation state at the other site. The observed independence of the Fea3 and CuB sites provides further support for Fea3(3)+ OOH, rather than Fea3(3)+ OOCuB2+, as an intermediate in the reduction of O2 to water by the oxidase.  相似文献   

16.
17.
The role of lipids in membrane structure and function was studied by measuring the major lipid classes in mitochondria isolated from flight muscle of the blowfly, Phormia regina. Approximately 98% of the total lipid is phospholipid. Neutral lipid constitutes the remaining 2% of the total. Phosphatidylethanolamine accounts for 55–60% of the phospholipid. A molecular ratio of 4:1:1 is found for phosphatidylethanolamine, phosphatidylcholine, and cardiolipin (diphosphatidylglycerol). The neutral lipids include cholesterol, about 20%, and quinone, 40–45% of the total. The free fatty acid content of the neutral lipid fraction is variable, apparently being generated by endogenous phospholipase activity. The fatty acids of the neutral and phospholipid classes are predominantly 14–18 carbon acids; long-chain fatty acids of 20 and 22 carbons are essentially absent. The neutral lipid fraction contains 43% saturated and 51% monoenoic fatty acids. More than 65% of the phospholipid fatty acids are unsaturated. The principal fatty acids are palmitic, palmitoleic, oleic, linoleic, and linolenic. No trace of α- or β-tocopherol is detected. As vitamin E is considered an important naturally occuring antioxidant that prevents lipid peroxidation, the apparent absence of α- and β-tocopherol in these mitochondria coupled with intense oxidative activity of the mitochondria leads to the suggestion that blowfly flight muscle mitochondria may be particularly susceptible to peroxidative damage.  相似文献   

18.
The insulin-like growth factor binding protein (BP) secreted by bovine kidney (MDBK) cells has been purified by affinity chromatography on a rat IGF-2 Sepharose column. Purified BP migrated as a single band of Mr 40,000 upon SDS polyacrylamide gel electrophoresis. An N-terminal sequence of 53 residues was obtained which was very similar up to residue 21 to the corresponding rat BRL-3A BP sequence. In competitive binding experiments with bovine IGF-1 and IGF-2, and recombinant human IGF-1, BP had a similar affinity for these ligand when IGF-1 tracer was used, but a higher affinity for IGF-2 with IGF-2 as radioligand. The N-terminal destripeptide truncated form of bovine IGF-1, which has enhanced biological activity, was found to have a markedly reduced affinity for BP compared to intact IGF-1. The increased bioactivity of destripeptide IGF-1 can be explained by this reduced affinity for BP.  相似文献   

19.
A new method for the purification of bovine plasma amine oxidase is described. The enzyme is purified by ammonium sulfate precipitation and by affinity chromatography performed with AH-Sepharose 4B and concanavalin A-Sepharose. Three activity peaks were separated, all showing similar properties. Specific activity is the highest described for this enzyme. The enzyme appears to contain 2 copper atoms and 1 carbonyl group/molecule.  相似文献   

20.
Fourier Transform Infrared (FT-IR) spectra of solid samples of DNA and RNA obtained from freeze-drying at solid CO2 and liquid nitrogen temperatures, have been recorded and correlation between the conformational transitions and spectral changes is proposed. It is concluded that an equilibrium exists between A, B and Z conformations at low temperatures for the DNA molecule, which is temperature dependent, whereas the RNA molecule exhibits only the A conformation. The results have been compared with the metal-adducts of DNA and RNA, where one of the conformations is predominant. Marker infrared bands for the B conformer have been found to be the strong band at 825 cm-1 (sugar conformer mode) and a band with medium intensity at 690 cm-1 (guanine breathing mode). The A conformation showed characteristic bands at 810 and 675 cm-1. The B to Z conformational transition was characterized by the strong absorption bands near 820-810 cm-1 and at 665-600 cm-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号