首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In general, splicing regulatory elements are defined as Enhancers or Silencers depending on their positive or negative effect upon exon inclusion. Often, these sequences are usually present separate from each other in exonic/intronic sequences. The Composite Exonic Splicing Regulatory Elements (CERES) represent an extreme physical overlap of enhancer/silencer activity. As a result, when CERES elements are mutated the consequences on the splicing process are difficult to predict. Here, we show that the functional activity of the CERES2 sequence in CFTR exon 12 is regulated by the binding, in very close proximity to each other, of several SR and hnRNP proteins. Moreover, our results show that practically the entire exon 12 sequence context participate in its definition. The consequences of this situation can be observed at the evolutionary level by comparing changes in conservation of different splicing elements in different species. In conclusion, our study highlights how it is increasingly difficult to define many exonic sequences by simply breaking them down in isolated enhancer/silencer or even neutral elements. The real picture is close to one of continuous competition between positive and negative factors where affinity for the target sequences and other dynamic factors decide the inclusion or exclusion of the exon.  相似文献   

3.
The highly conserved, ubiquitously expressed, zinc finger protein CTCF is involved in enhancer blocking, a mechanism crucial for shielding genes from illegitimate enhancer effects. Interestingly, CTCF-binding sites are often flanked by thyroid hormone response elements (TREs), as at the chicken lysozyme upstream silencer. Here we identify a similar composite site positioned upstream of the human c-myc gene. For both elements, we demonstrate that thyroid hormone abrogates enhancer blocking. Relief of enhancer blocking occurs even though CTCF remains bound to the lysozyme chromatin. Furthermore, chromatin immunoprecipitation analysis of the lysozyme upstream region revealed that histone H4 is acetylated at the CTCF-binding site. Loss of enhancer blocking by the addition of T3 led to increased histone acetylation, not only at the CTCF site, but also at the enhancer and the promoter. Thus, when TREs are adjacent to CTCF-binding sites, thyroid hormone can regulate enhancer blocking, thereby providing a new property for what was previously thought to be constitutive enhancer shielding by CTCF.  相似文献   

4.
Effect of silencer on polyomavirus DNA replication.   总被引:3,自引:3,他引:0       下载免费PDF全文
  相似文献   

5.
We previously located two 12-O-tetradecanoylphorbol-13-acetate (TPA)-responsive enhancers, MSTRE-I and MSTRE-II, in the upstream sequence of the MS gene of Epstein-Barr virus (Liu, Q., and Summers, W.C. (1989) J. Virol. 63, 5062-5068). The core sequence of the MSTRE-I enhancer is now determined to be between -718 and -708 of the upstream sequence of the MS gene. The activity of the enhancer is also sensitive to its immediate surrounding sequence on either side. A single copy of a 30-base pair (bp) fragment containing the MSTRE-I sequence was able to confer TPA responsiveness upon the MS promoter even in the absence of an AP-1 binding site. Multiple tandem copies of this 30-bp fragment, regardless of their relative orientations to each other, could function synergistically to enhance the MS promoter activity. At least two copies of the 30-bp fragment were required to bestow TPA induction upon the thymidine kinase gene promoter of herpes simplex virus type 1. The MSTRE-I sequence could also be bound by a Fos-GCN4 chimeric protein but with an affinity much lower than that between the chimeric protein and the AP-1 binding site. This MSTRE-I region has strong homology to one of the TPA-responsive elements (the ZII domain) in the upstream sequence of the EBV BZLF1 gene. In addition, a putative negative regulatory region or silencer was found immediately downstream of the MSTRE-I enhancer. This potential silencer region contains a 14-bp sequence that is homologous to the silencer consensus sequence of the BZLF1 gene. Therefore, the regulation of the MS gene may share the same pathway with the immediate early gene BZLF1.  相似文献   

6.
7.
A novel regulatory element which contributes to the regulation of quantitative, tissue-specific differences in gene expression has been found between -771 and -676 bp upstream of the major histocompatibility complex (MHC) class I gene, PD1. Molecular dissection of this element reveals the presence of two overlapping functional activities: an enhancer and a silencer. Distinct nuclear factors bind to the overlapping enhancer and silencer DNA sequence elements within the regulatory domain. The levels of factors binding the silencer DNA sequence in different cell types are inversely related to levels of class I expression; in contrast, factors binding the enhancer DNA sequence can be detected in all cells. In cultured cell lines, inhibition of protein synthesis leads to the rapid loss of silencer complexes, with a concomitant increase in both enhancer complexes and MHC class I RNA. From these data, we conclude that a labile silencer factor competes with a constitutively expressed, stable enhancer factor for overlapping DNA-binding sites; the relative abundance of the silencer factor contributes to establishing steady-state levels of MHC class I gene expression.  相似文献   

8.
9.
神经系统特异性基因正确的时空表达受细胞内外信号的调控,信号传导途径最终的靶位点是能结合特异转录因子的DNA序列.目前发现的决定神经系统基因特异性表达的顺式作用元件既有增强子,也有沉默子.它们可以特异性地增强基因在神经系统的表达,或特异性抑制基因在非神经系统的表达. 顺式元件要发挥这些作用,依赖于与其结合的反式因子,而这些反式因子又能与其他蛋白质或DNA序列发生互动, 通过协调作用,共同决定基因的时空表达顺序.  相似文献   

10.
11.
Cluster-Buster: Finding dense clusters of motifs in DNA sequences   总被引:15,自引:2,他引:13       下载免费PDF全文
Frith MC  Li MC  Weng Z 《Nucleic acids research》2003,31(13):3666-3668
  相似文献   

12.
As well as generating protein isoform diversity, in some cases alternative splicing generates RNAs that harbor premature termination codons and that are subject to nonsense-mediated decay (NMD). We previously identified an apparent pseudo-exon in the rat α-tropomyosin (Tpm1) gene as a probable genuine alternatively spliced exon that causes NMD when spliced into Tpm1 RNA. Here, we report the analysis of cis-acting splicing regulatory elements within this “nonsense exon.” Guided by the data set of predicted splicing enhancer and silencer elements compiled by Zhang and Chasin, we made a series of mutations through the nonsense exon and found that like authentic exons it is densely packed with enhancer and silencer elements. Strikingly, 11 of 13 tested mutations behaved as predicted computationally. In particular, we found that a G-rich silencer at the 5′ end, which is crucial for skipping of the nonsense exon, functions by binding hnRNP-H and F.  相似文献   

13.
Exonic sequence variations may induce exon inclusion or exclusion from the mature mRNA by disrupting exonic regulatory elements and/or by affecting a nuclear reading frame scanning mechanism. We have carried out a systematic study of the effect on cystic fibrosis transmembrane regulator exon 9 splicing of natural and site-directed sequence mutations. We have observed that changes in the splicing pattern were not related to the creation of premature termination codons, a fact that indicates the lack of a significant nuclear check of the reading frame in this system. In addition, the splice pattern could not be predicted by available Ser/Arg protein matrices score analysis. An extensive site-directed mutagenesis of the 3' portion of the exon has identified two juxtaposed splicing enhancer and silencer elements. The study of double mutants at these regulatory elements showed a complex regulatory activity. For example, one natural mutation (146C) enhances exon inclusion and overrides all of the downstream silencing mutations except for a C to G transversion (155G). This unusual effect is explained by the creation of a specific binding site for the inhibitory splicing factor hnRNPH. In fact, on the double mutant 146C-155G, the silencing effect is dominant. These results indicate a strict dependence between the two juxtaposed enhancer and silencer sequences and show that many point mutations in these elements cause changes in splicing efficiency by different mechanisms.  相似文献   

14.
15.
16.
17.
Keplinger BL  Guo X  Quine J  Feng Y  Cavener DR 《Genetics》2001,157(2):699-716
The Drosophila melanogaster Gld gene has multiple and diverse developmental and physiological functions. We report herein that interactions among proximal promoter elements and a cluster of intronically located enhancers and silencers specify the complex regulation of Gld that underlies its diverse functions. Gld expression in nonreproductive tissues is largely determined by proximal promoter elements with the exception of the embryonic labium where Gld is activated by an enhancer within the first intron. A nuclear protein, GPAL, has been identified that binds the Gpal elements in the proximal promoter region. Regulation of Gld in the reproductive organs is particularly complex, involving interactions among the Gpal proximal promoter elements, a unique TATA box, three distinct enhancer types, and one or more silencer elements. The three somatic reproductive organ enhancers each activate expression in male and female pairs of reproductive organs. One of these pairs, the male ejaculatory duct and female oviduct, are known to be developmentally homologous. We report evidence that the other two pairs of organs are developmentally homologous as well. A comprehensive model to explain the full developmental regulation of Gld and its evolution is presented.  相似文献   

18.
19.
A negative element involved in vimentin gene expression.   总被引:13,自引:8,他引:5       下载免费PDF全文
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号