首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L-arginine participates in many important and diverse biochemical reactions associated with the normal physiology of the organism. In the present study, we investigated the effect of central administration of L-arginine on the stress response and its mechanism in neonatal chicks. Intracerebroventricular (i.c.v.) injection of L-arginine clearly attenuated the stress response in a dose-dependent manner, and induced sleep-like behavior during 10 min. To clarify the mechanism by which L-arginine induces sedative and hypnotic effects in chicks, we investigated the effects of nitric oxide (NO) synthase (NOS) inhibitors on L-arginine-induced sedative and hypnotic effects, and as well as the effects of a NO donor. L-Arginine-induced (1.9 micromol) sedative and hypnotic effects were attenuated by i.c.v. co-injection with a non-selective NOS inhibitor N(G)-nitro-L-arginine methyl ester HCl (400 nmol). In addition, the effects of L-arginine were slightly attenuated by the inactive isomer of the NOS inhibitor N(G)-nitro-D-arginine methyl ester HCl (400 nmol). The i.c.v. injection of 3-morpholinosylnomine hydrochloride, a spontaneous NO donor, had little effect on postures. The i.c.v. injection of L-arginine had no effect on NOx concentration at various brain sites. These results suggested that the contribution of NO generation via NOS may be low in the sedative and hypnotic actions of L-arginine. Therefore, L-arginine and/or its metabolites, excluding NO, may be necessary for these actions.  相似文献   

2.
The purpose of the present study was to clarify the central nervous system function of amino acids during acute stress. In Experiment 1, changes in free amino acid pattern were investigated in the brain of neonatal chicks exposed to either restraint with isolation-induced or fasting stress. l-Proline and l-arginine were decreased in the telencephalon and diencephalon under any stress. Since the central nervous system functions of l-arginine during the stress response has recently been reported, in Experiment 2, the effect of intracerebroventricular injection of l-proline (0.5, 1.0, 2.0 μmol) during isolation-induced stress was investigated. l-Proline induced sedative and hypnotic effects in a dose-dependent manner. It is suggested that l-proline may have an important role to attenuate the stress response in the central nervous system of chicks.  相似文献   

3.
Recently, we reported that intracerebroventricular (i.c.v.) injection of l-alanine attenuated the stress response under an acute stressful condition in chicks. However, no information of l-alanine was available for the influence on energy expenditure and changes in the posture under stressful conditions. The purpose of the present study was to clarify whether central l-alanine affects heat production (HP) of neonatal chicks, and whether HP is correlated with the behavior after isolation-induced stress. The i.c.v. injection of l-alanine (0.8 μmol) decreased oxygen consumption, carbon dioxide production and HP shortly after injection. Central l-alanine reduced the posture for active wakefulness, but increased the posture for sitting motionless with head drooped (sleeping posture). The present study demonstrates that central l-alanine decreases energy expenditure and causes a hypnotic effect in chicks exposed to an acute stressful condition.  相似文献   

4.
Rats subcutaneously implanted with AH109A hepatoma cells show hyperlipidemia with high concentrations of serum triglyceride and nonesterified fatty acid, suppression of lipoprotein lipase (LPL), and elevation of hormone-sensitive lipase (HSL) activities during the growth of the hepatoma. Supplementation of the diet with sulfur amino acids such as l-methionine (Met) and l-cystine (Cys) improved hyperlipidemia by restoring LPL and HSL activities. In the present study, we have attempted to examine the effects of sulfur amino acids on the activity and mRNA level of LPL and the activity of HSL using 3T3-L1 cells, which are known to differentiate to adipocytes. The adipocytes were incubated with various concentrations of Met, Cys or l-cysteine (CysH) in the absence or presence of tumor necrosis factor-α (TNF-α). LPL activity was suppressed by TNF-α. In the absence of TNF-α, Met, Cys and CysH did not change the LPL activity. In the presence of TNF-α, Met and Cys significantly increased the LPL activity, and Met also enhanced the LPL mRNA level. HSL activity was also suppressed by TNF-α. In the absence of TNF-α, Met enhanced the HSL activity. In the presence of TNF-α, Met, Cys and CysH suppressed the HSL activity. Sulfur amino acids such as Met, Cys and CysH affected the LPL activity, mRNA level, and HSL activity in 3T3-L1 adipocytes. Some of these effects of sulfur amino acids were different between LPL and HSL, between the absence and the presence of TNF-α, and between 3T3-L1 adipocytes and the adipose tissue from rats.  相似文献   

5.
Summary. Intracerebroventricular (i.c.v.) injection of L-serine was shown to have sedative and hypnotic effects on neonatal chicks under acute stressful conditions. To clarify the central mechanism of these effects of L-serine, two experiments were done. First, we focused on the glycogenic pathway in which L-serine is converted into pyruvate and finally glucose. I.c.v. administration of pyruvate (0.84 μmol) did not induce any behavioral and endocrinological changes, while L-serine and glucose triggered sedative and hypnotic effects. Secondly, the relationship between the sedation by L-serine and the metabolism into other amino acids which have sedative effects was investigated in the telencephalon and diencephalon. In both brain areas, a dose-dependent increase was seen in L-serine, although other amino acids were not changed. In the present study, it was concluded that the sedative action of L-serine was not due to the action of its metabolite pyruvate, or to the action of other amino acids. Authors’ address: M. Furuse, PhD, Laboratory of Advanced Animal and Marine Bioresources, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan  相似文献   

6.
Jilek A  Mollay C  Lohner K  Kreil G 《Amino acids》2012,42(5):1757-1764
In the skin of fire-bellied toads (Bombina species), an aminoacyl-l/d-isomerase activity is present which catalyses the post-translational isomerization of the l- to the d-form of the second residue of its substrate peptides. Previously, this new type of enzyme was studied in some detail and genes potentially coding for similar polypeptides were found to exist in several vertebrate species including man. Here, we present our studies to the substrate specificity of this isomerase using fluorescence-labeled variants of the natural substrate bombinin H with different amino acids at positions 1, 2 or 3. Surprisingly, this enzyme has a rather low selectivity for residues at position 2 where the change of chirality at the alpha-carbon takes place. In contrast, a hydrophobic amino acid at position 1 and a small one at position 3 of the substrate are essential. Interestingly, some peptides containing a Phe at position 3 also were substrates. Furthermore, we investigated the role of the amino-terminus for substrate recognition. In view of the rather broad specificity of the frog isomerase, we made a databank search for potential substrates of such an enzyme. Indeed, numerous peptides of amphibia and mammals were found which fulfill the requirements determined in this study. Expression of isomerases with similar characteristics in other species can therefore be expected to catalyze the formation of peptides containing d-amino acids.  相似文献   

7.
Summary. Hydrogensquarates of dipeptide l-threonyl-l-serine (H-Thr-Ser-OH) and l-serine (HSq × Ser) have been synthesized, isolated and spectroscopic characterized by solid-state linear-polarized IR-spectroscopy, 1H- and 13C-NMR, ESI-MS and HPLC with tandem masspectrometry (MS-MS) methods. The structures of the salts and neutral dipeptide have been predicted theoretically by ab initio calculations. In the case of H-Thr-Ser-OH the theoretical data are supported by IR-LD ones. The hydrogensquarates consist in positive charged dipeptide or amino acid moiety and negative hydrogensquarate anion (HSq) stabilizing by strong intermolecular hydrogen bonds. The data about the l-serine hydrogensquarate are compared with known crystallographic data thus indicating a good correlation between the theoretical predicted structures and experimentally obtained by single crystal X-ray diffraction.  相似文献   

8.
9.
l-Amino acid dehydrogenases are a group of enzymes that catalyze the reversible oxidative deamination of l-amino acids to their corresponding 2-oxoacids, using either nicotinamide adenine dinucleotide (NAD+) or nicotinamide adenine dinucleotide phosphate (NADP+) as cofactors. These enzymes have been studied widely because of their potential applications in the synthesis of amino acids for use in production of pharmaceutical peptides, herbicides and insecticides, in biosensors or diagnostic kits, and development of coenzyme regeneration systems for industrial processes. This article presents a review of the currently available data about the recently discovered amino acid dehydrogenase superfamily member l-aspartate dehydrogenase (l-AspDH), their relevant catalytic properties and speculated physiological roles, and potential for biotechnological applications. The proposed classification of l-AspDH on the basis of bioinformatic information and potential role in vivo into NadB (NAD biosynthesis-related) and non-NadB type is unique. In particular, the mesophilic non-NadB type l-AspDH is a novel group of amino acid dehydrogenases with great promise as potential industrial biocatalysts owing to their relatively high catalytic properties at room temperature. Considering that only a few l-AspDH homologs have been characterized so far, identification and prodigious enzymological research of the new members will be necessary to shed light on the gray areas pertaining to these enzymes.  相似文献   

10.
l-Theanine (=γ-glutamylethylamide) is an amino acid ingredient in green tea with a structural analogy to l-glutamine (l-GLN) rather than l-glutamic acid (l-GLU), with regards to the absence of a free carboxylic acid moiety from the gamma carbon position. l-theanine markedly inhibits [3H]l-GLN uptake without affecting [3H]l-GLU uptake in cultured neurons and astroglia. In neural progenitor cells with sustained exposure to l-theanine, upregulation of the l-GLN transporter isoform Slc38a1 expression and promotion of both proliferation and neuronal commitment are seen along with marked acceleration of the phosphorylation of mammalian target of rapamycin (mTOR) and relevant downstream proteins. Stable overexpression of Slc38a1 leads to promotion of cellular growth with facilitated neuronal commitment in pluripotent embryonic carcinoma P19 cells. In P19 cells stably overexpressing Slc38a1, marked phosphorylation is seen with mTOR and downstream proteins in a fashion insensitive to the additional stimulation by l-theanine. The green tea amino acid l-theanine could thus elicit pharmacological actions to up-regulate Slc38a1 expression for activation of the mTOR signaling pathway required for cell growth together with accelerated neurogenesis after sustained exposure in undifferentiated neural progenitor cells. In this review, I summarize a novel pharmacological property of the green tea amino acid l-theanine for embryonic and adult neurogenesis with a focus on the endogenous amino acid analog l-GLN. A possible translational strategy is also discussed on the development of dietary supplements and nutraceuticals enriched of l-theanine for the prophylaxis of a variety of untoward impairments and malfunctions seen in patients with different neurodegenerative and/or neuropsychiatric disorders.  相似文献   

11.
The ability of Aspergillus fumigatus l-amino acid oxidase (l-aao) to cause the resolution of racemic mixtures of dl-amino acids was investigated with dl-alanine, dl-phenylalanine, dl-tyrosine, and dl-aspartic acid. A chiral column, Crownpak CR+ was used for the analysis of the amino acids. The enzyme was able to cause the resolution of the three dl-amino acids resulting in the production of optically pure d-alanine (100% resolution), d-phenylalanine (80.2%), and d-tyrosine (84.1%), respectively. The optically pure d-amino acids have many uses and thus can be exploited industrially. This is the first report of the use of A. fumigatus l-amino acid oxidase for racemic resolution of dl-amino acids.  相似文献   

12.
In this study, the effect of salt stress on metabolic response of Tetragenecoccus halophilus was investigated, and the metabolic alternations were analyzed using liquid chromatography-mass spectrometry according to the metabolomics approach. A total of 81 intracellular metabolites were identified, and significant differences were observed in the levels of metabolites mainly participating in central carbon metabolism, fatty acid metabolism, and amino acid metabolism. Analysis of the membrane fatty acid distribution showed that higher proportions of unsaturated fatty acid were observed in salt-treated cells. Additionally, salt-stressed cells exhibited higher amounts of compatible solutes including proline, glycine, citrulline, and N-acetyltyrptophan, and lower amounts of branched-chain amino acids. Interestingly, higher amounts of indole, salicylic acid, and coronatine, which are regarded as signaling molecule and suggested to combat osmotic stress, were detected in salt-shocked cells compared with the untreated cells. Taken together, these results suggested that increased unsaturated membrane fatty acids, accumulation of compatible solutes, and up-regulation of signaling molecule may be potential mechanisms employed by T. halophilus during salt stress.  相似文献   

13.
High-protein diets have been shown to alleviate detrimental effects of high-fat diets and this effect can be partially mimicked by dietary l-leucine supplementation. Here, we aimed to elucidate the early mechanisms and the specificity of leucine effects. We performed a 1-week trial with male C57BL/6 mice fed ad libitum with semisynthetic high-fat diets containing an adequate (10 % w/w, AP) or high (50 % w/w, HP) amount of whey protein, or supplemented with l-leucine corresponding to the leucine content within the HP diet (Leu) or supplemented with equimolar l-alanine (Ala). Food and water intake were monitored continuously using a computer-controlled monitor system and body composition changes were assessed using quantitative NMR. HP completely prevented the AP-induced accumulation of body fat. Leu and Ala resulted in a similar reduction of body fat accumulation which was intermediate between AP and HP. There were no significant effects on plasma glucose or insulin. Triacylglycerol content and gene expression of lipogenesis enzymes in liver as well as plasma cholesterol were reduced by HP compared to AP with Leu and Ala again showing intermediate effects. Body fat gain and liver triacylglycerols were strongly correlated with total energy intake. Water intake was rapidly increased by HP feeding and total water intake correlated strongly with total amino nitrogen intake. We concluded that the positive effects of high-protein diets on metabolic syndrome associated traits are acutely due to effects on satiety possibly linked to amino nitrogen intake and on the subsequent suppression of liver lipogenesis without evidence for a specific leucine effect.  相似文献   

14.
It was the aim of this study to examine the potential regulatory effects of a long-term low dietary protein supply on the transport capacity of the jejunal brush-border membrane for amino acids. For this purpose, we used the neutral amino acids L-alanine (representative for nonessential amino acids) and L-leucine (representative for essential amino acids) as model substances. Ten sheep lambs, 8 weeks of age and 19-27 kg body weight, were allotted to two dietary regimes with either adequate or reduced protein supply which was achieved by 17.9% and 9.7% of crude protein in the concentrated feed, respectively. The feeding periods were 4-6 weeks in length. Similarly, eight goat kids of 5-7 weeks of age and 8-14 kg body weight were allotted to either adequate (crude protein 20.1%, feeding period 9-12 weeks) or reduced protein supply (10.1%, feeding period 17-18 weeks). Dietary protein reduction in lambs caused a significant body weight loss of 0.6 +/- 0.7 kg, whereas the body weight in control animals increased by 1.9 +/- 0.7 kg (P<0.05). Plasma urea concentrations decreased significantly by 60% (low protein 2.3 +/- 0.1 versus control 5.7 +/- 0.2 mmol l(-1), P<0.001). In kids, reduction of dietary protein intake led to significant decreases of the daily weight gain by 48% from 181 +/- 8 g to 94 +/- 3 g (P<0.001) and daily dry matter intake by 27% from 568 +/- 13 g to 417 +/- 6 g (P<0.01). Respective urea concentrations in plasma were reduced by 77% from 5.2 +/- 0.4 to 1.2 +/- 0.2 mmol l(-1) (P<0.01). Kinetic analyses of the initial rates of alanine uptake into isolated jejunal brush-border membrane vesicles from sheep and goats as affected by low dietary protein supply yielded that the apparent Km was neither significantly different between the species nor significantly affected by the feeding regime thus ranging between 0.12 and 0.16 mmol.l(-1). Reduction of dietary protein, however, resulted in significantly decreased Vmax values of the transport system by 25-30%, irrespective of the species. Kinetic analyses of the initial rates of leucine uptake into jejunal brush-border membrane vesicles from sheep and goats yielded that leucine uptake was mediated by Na+-dependent as well as Na+-independent processes. Similar to alanine, apparent Km values of leucine uptake were neither different between the species nor affected due to low dietary protein and ranged between 0.08 and 0.15 mmol l(-1). In contrast to the alanine transport mechanism, dietary protein reduction resulted in increased Vmax values of Na+-dependent leucine transport by 53% in sheep and 230% in goats. Similarly, Na+-independent leucine uptake was stimulated by 85% and 200% in sheep and in goats, respectively. This study shows adaptation of amino acid absorption at the brush-border membrane level of jejunal enterocytes of small ruminants due to dietary protein reduction. Whereas the transport capacity for the nonessential amino acid alanine was reduced due to low dietary protein, the transport capacity for the essential amino acid leucine was markedly stimulated. From this, the involvement of rather different feedback mechanisms in adaptation of intestinal amino acid transport mechanisms has to be discussed.  相似文献   

15.
l-Ribose is a rare and expensive sugar that can be used as a precursor for the production of l-nucleoside analogues, which are used as antiviral drugs. In this work, we describe a novel way of producing l-ribose from the readily available raw material l-arabinose. This was achieved by introducing l-ribose isomerase activity into l-ribulokinase-deficient Escherichia coli UP1110 and Lactobacillus plantarum BPT197 strains. The process for l-ribose production by resting cells was investigated. The initial l-ribose production rates at 39°C and pH 8 were 0.46 ± 0.01 g g−1 h−1 (1.84 ± 0.03 g l−1 h−1) and 0.27 ± 0.01 g g−1 h−1 (1.91 ± 0.1 g l−1 h−1) for E. coli and for L. plantarum, respectively. Conversions were around 20% at their highest in the experiments. Also partially purified protein precipitates having both l-arabinose isomerase and l-ribose isomerase activity were successfully used for converting l-arabinose to l-ribose.  相似文献   

16.
l-2-Aminobutyric acid can be synthesized in a transamination reaction from l-threonine and l-aspartic acid as substrates by the action of threonine deaminase and aromatic aminotransferase, but the by-product l-alanine was produced simultaneously. A small amount of l-alanine increased the complexity of the l-2-aminobutyric acid recovery process because of their extreme similarity in physical and chemical properties. Acetolactate synthase has been introduced to remove the pyruvate intermediate for reducing the l-alanine concentration partially. To eliminate the remnant l-alanine, alanine racemase of Bacillus subtilis in combination with d-amino acid oxidase of Rhodotorula gracilis or Trigonopsis variabilis respectively was introduced into the reaction system for the l-2-aminobutyric acid synthesis. l-Alanine could be completely removed by the action of alanine racemase of B. subtilis and d-amino acid oxidase of R. gracilis; thereby, high-purity l-2-aminobutyric acid was achieved. The results revealed that alanine racemase could discriminate effectively between l-alanine and l-2-aminobutyric acid, and selectively catalyzed l-alanine to d-alanine reversibly. d-Amino acid oxidase then catalyzed d-alanine to pyruvate stereoselectively. Furthermore, this method was also successfully used to remove the by-product l-alanine in the production of other neutral amino acids such as l-tertiary leucine and l-valine, suggesting that multienzymatic whole-cell catalysis can be employed to provide high purity products.  相似文献   

17.
Hira T  Ohyama S  Hara H 《Amino acids》2003,24(4):389-396
Summary.  Previously, we found that guanidinated casein, a l-homoarginine-containing protein, was a more potent stimulator of pancreatic enzyme secretion than intact casein in rats. In this study, we examined secretory response and adaptation of the exocrine pancreas to the administration of free l-homoarginine in normal and bile-pancreatic juice (BPJ)-diverted rats. An intraperitoneal injection of l-homoarginine (10 mg/rats) produced immediate and transient reduction in pancreatic secretion in BPJ-diverted rats, but not in normal rats. The BPJ-diverted rats were fed with either a 25% casein, 45% casein, or 45% casein diet supplemented with l-homoarginine (19 g/kg diet) for 4 days. Feeding of a diet containing l-homoarginine inhibited the pancreatic adaptation induced by the high-protein diet. These results indicate that l-homoarginine has an inhibitory effect on the secretion and production of exocrine pancreatic enzyme in BPJ-diverted rats, and l-homoarginine may have an antagonistic effect on CCK receptors. Received July 1, 2002 Accepted August 28, 2002 Published online December 20, 2002 Authors' address: Dr. Hiroshi Hara, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan E-mail: hara@chem.agr.hokudai.ac.jp  相似文献   

18.
The d-enantiomers of proteinogenic amino acids fulfill essential functions in bacteria, fungi and animals. Just in the plant kingdom, the metabolism and role of d-amino acids (d-AAs) still remains unclear, although plants have to cope with significant amounts of these compounds from microbial decay in the rhizosphere. To fill this gap of knowledge, we tested the inhibitory effects of d-AAs on plant growth and established a method to quantitate 16 out of 19 proteinogenic amino acids and their d-enantiomers in plant tissue extracts. Therefore, the amino acids in the extracts were derivatized with Marfey’s reagent and separated by HPLC–MS. We used two ecotypes (Col-0 and C24) and a mutant (lht1) of the model plant Arabidopsis thaliana to determine the influence and fate of exogenously applied d-AAs. All of them were found in high concentrations in the plant extracts after application, even in lht1, which points to additional transporters facilitating the import of d-AAs. The addition of particular amino acids (d-Trp, d-Phe, d-Met and d-His) led to the accumulation of the corresponding l-amino acid. In almost all cases, the application of a d-AA resulted in the accumulation of d-Ala and d-Glu. The presented results indicate that soil borne d-AAs can actively be taken up and metabolized via central metabolic routes.  相似文献   

19.
The oxidative stress induced by acute exertion may interfere with blood platelet activation. The beneficial effect of l-carnitine (γ-trimethylamino-β-hydroxybutyric acid) on oxidative stress in blood platelets has not been fully investigated; however, different studies indicate that this compound modulates platelet functions. The aim of our study was to assess the effects of l-carnitine on platelet activation and oxidative/nitrative protein damage (determined by the levels of protein carbonyl groups, thiol groups, and 3-nitrotyrosine residues) in resting blood platelets or platelets treated with peroxynitrite (ONOO, a strong physiological oxidant) in vitro. We also investigated the effects of l-carnitine on the level of platelet glutathione and on the formation of superoxide anion radicals ( O2 - · ) \left( {{\hbox{O}}_2^{ - \bullet }} \right) , lipid peroxidation measured by thiobarbituric acid reactive substances (TBARS) in blood platelets stimulated by thrombin (a strong physiological agonist), and platelet aggregation induced by adenosine diphosphate (a strong physiological stimulator). We have observed that carnitine decreases platelet activation (measured by platelet aggregation, the generation of O2 - · {\hbox{O}}_2^{ - \bullet } , and TBARS production). Moreover, our results in vitro demonstrate that carnitine may protect against oxidation of thiol groups induced by ONOO. Thus, carnitine may have some protectory effects against oxidative changes induced in blood platelets.  相似文献   

20.
Bacillus fordii MH602 was newly screened from soil at 45 °C and exhibited high activities of hydantoinase and carbamoylase, efficiently yielding l-amino acids including phenylalanine, phenylglycine and tryptophan with the bioconversion yield of 60–100% from the corresponding dl-5-substituted hydantoins. Hydantoinase activity was found to be cell-associated and inducible. The optimal inducer was dl-5-methylhydantoin with concentration of 0.014 mol L−1 and added to the fermentation medium in the exponential phase of growth. In the production of optically pure amino acids from dl-5-benylhydantoin, the optimal temperature and pH of this reaction were 45–50 °C and 7.5 respectively. The hydantoinase was non-stereoselective, while carmbamoylase was l-selective. The hydantoinase activity was not subject to substrate inhibition, or product inhibition by ammonia. In addition, The activities of both enzymes from crude extract of the strain were thermostable; the hydantoinase and carbamoylase retained about 90% and 60% activity after 6 h at 50 °C, respectively. Since reaction at higher temperature is advantageous for enhancement of solubility and for racemization of dl-5-substituted hydantoins, the relative paucity of l-selective hydantoinase systems, together with the high level of hydantoinase and carbamoylase activity and unusual substrate selectivity of the strain MH602, suggest that it has significant potential applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号