首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic mapping of new RFLPs at Xq27-q28.   总被引:15,自引:0,他引:15  
The development of the human gene map in the region of the fragile X mutation (FRAXA) at Xq27 has been hampered by a lack of closely linked polymorphic loci. The polymorphic loci DXS369 (detected by probe RN1), DXS296 (VK21A, VK21C), and DXS304 (U6.2) have recently been mapped to within 5 cM of FRAXA. The order of loci near FRAXA has been defined on the basis of physical mapping studies as cen-F9-DXS105-DXS98-DXS369-DXS297-FRAXA-++ +DXS296-IDS-DXS304-DXS52-qter. The probe VK23B detected HindIII and XmnI restriction fragment length polymorphisms (RFLPs) at DXS297 with heterozygote frequencies of 0.34 and 0.49, respectively. An IDS cDNA probe, pc2S15, detected StuI and TaqI RFLPs at IDS with heterozygote frequencies of 0.50 and 0.08, respectively. Multipoint linkage analysis of these polymorphic loci in normal pedigrees indicated that the locus order was F9-(DXS105, DXS98)-(DXS369, DXS297)-(DXS293,IDS)-DXS304-DXS52. The recombination fractions between adjacent loci were F9-(0.058)-DXS105-(0.039)-DXS98-(0.123)-DXS369-(0.00)- DXS297-(0.057)-DXS296- (0.00)-IDS-(0.012)-DXS304-(0.120)-DXS52. This genetic map will provide the basis for further linkage studies of both the fragile X syndrome and other disorders mapped to Xq27-q28.  相似文献   

2.
Summary The q26–q28 region of the human X chromosome contains several important disease loci, including the locus for the fragile X mental retardation syndrome. We have characterized new polymorphic DNA markers useful for the genetic mapping of this region. They include a new BclI restriction fragment length polymorphism (RFLP) detected by the probe St14-1 (DXS52) and which may therefore be of diagnostic use in hemophilia A families. A linkage analysis was performed in fragile X families and in large normal families from the Centre d'Etude du Polymorphisme Humain (CEPH) by using seven polymorphic loci located in Xq26-q28. This multipoint linkage study allowed us to establish the order centromere-DXS100-DXS86-DXS144-DXS51-F9-FRAX-(DXS52-DXS15). Together with other studies, our results define a cluster of nine loci that are located in Xq26-q27 and map within a 10 to 15 centimorgan region. This contrasts with the paucity of markers (other than the fragile X locus) between the F9 gene in q27 and the G6PD cluster in q28, which are separated by about 30% recombination.  相似文献   

3.
The CA repeat microsatellite DXS456, with a heterozygosity of 77%, has been localized by multipoint linkage analysis in relation to 20 other genetic markers. DXS456 mapped to a 4.2-cM interval defined by the flanking markers DXS178 and DXS287. The maximum likelihood order of markers, cen-(DXYS1X/DXYS13X/DXYS2X/DXYS12X)-DXS366 -DXS178-DXS456-DXS287-DXS358-DXS267- qter, is favored by odds greater than 1000:1 over the subset of most likely alternative orders. Linkage of DXS456 can be inferred for at least six disease genes that are known to be linked to markers in the region Xq21.31-Xq25 and the marker will serve as an important index point for orienting these and other disease and marker loci in the region.  相似文献   

4.
Multilocus analysis of the fragile X syndrome   总被引:10,自引:2,他引:8  
Summary A multilocus analysis of the fragile X (fra(X)) syndrome was conducted with 147 families. Two proximal loci, DXS51 and F9, and two distal loci, DXS52 and DXS15, were studied. Overall, the best multipoint distances were found to be DXS51-F9, 6.9%, F9-fra(X), 22.4%; fra(X)-DXS52, 12.7%; DXS52-DXS15, 2.2%. These distances can be used for multipoint mapping of new probes, carrier testing and counseling of fra(X) families. Consistent with several previous studies, the families as a whole showed genetic heterogeneity for linkage between F9 and fra(X).  相似文献   

5.
We have characterized and genetically mapped two new DNA markers (DXS311 and DXS312) with respect to 10 existing loci in Xq26----Xq28 in a set of 15 families in which the fragile-X [fra(X)] syndrome was segregating. Two-point and multipoint linkage analyses were performed taking into account the incomplete penetrance of the fra(X) mutation. The most likely order on the basis of these data is centromere-DXS79-DXS10-DXS311-DXS86-(F9-DXS99 )-(DXS98-DXS312)-fra(X)-DXS52- DXS15-F8C-telomere. DXS98 and one of the new loci, DXS312, were found to be the proximal markers closest to the fra(X) locus. The order F9-(DXS98-DXS312)-fra(X) was found to be 5.9 x 10(4) times more likely than the order (DXS98-DXS312)-F9-fra(X).  相似文献   

6.
Linkage analysis was performed in 19 families segregating for the Wiskott-Aldrich syndrome (WAS) and in 1 family with X-linked thrombocytopenia using nine polymorphic DNA markers spanning the interval DXS7-DXS14. The results confirm close linkage of WAS to the DXS7, TIMP, OATL1, DXS255, DXS146, and DXS14 loci and reveal three additional marker loci, DXS426, SYP, and TFE3, to be closely linked to WAS. The linkage data are also consistent with the localization of X-linked thrombocytopenia to the same chromosomal region as WAS and support localization of the WAS gene between the TIMP and DXS 146 loci. However, the data were insufficient for positioning these disease genes with respect to the four marker loci that map within this latter interval. Analysis of recombination events between the marker loci place the TFE3 gene distal to DXS255 and favor the marker loci order Xpter-DXS7-(DXS426, TIMP)-(OATL1, SYP, TFE3)-DXS255-DXS146-DXS14.  相似文献   

7.
We report the isolation and characterization of a novel DNA marker (1A1) in Xqter in the region of the fragile X. Genetic studies in families segregating for the fragile X syndrome suggest that 1A1 lies between the disease mutation and the distal locus, DXS52. Studies in normal and fragile X families show that 1A1 is tightly linked to DXS52 (Zmax = 17.20; theta max = 0.03) and F8 (Zmax = 7.01; theta max = 0.08). Multipoint mapping of families supports the order Xcen-DXS105-FRAXA-1A1-DXS52-(F8, DXS115)-Xqter. Pulsed-field gel electrophoresis (PFGE) studies demonstrate that 1A1 defines a new region of at least 2 Mb of DNA not physically linked to DXS52 or F8, thus extending the physical map of Xq27-qter to over 4 Mb. Complex partial digestion PFGE patterns, probably due to differing degrees of methylation, are observed with 1A1 in unrelated normal and fragile-X-positive individuals, whereas other distal markers give uniform digestion profiles. Physical data suggest that 1A1 lies in a region less CpG rich than other distal markers in Xq27-qter.  相似文献   

8.
We describe two highly polymorphic microsatellite AC repeat sequences, VK23AC and VK14AC, which are closely linked to the fragile X at Xq27.3. Both VK23AC (DXS297) and VK14AC (DXS292) are proximal to the fragile site. Two-point linkage analysis in 31 fragile X families gave (a) a recombination frequency of 1% (range 0.00%-4%) with a maximum lod score of 32.04 for DXS297 and (b) a recombination frequency of 7% (range of 3%-15%) with a maximum lod score of 12.87 for DXS292. Both of these polymorphisms are applicable to diagnosis by linkage in families with fragile X syndrome. A multipoint linkage map of genetic markers at Xq27.3 was constructed from genotyping these polymorphisms in the CEPH pedigrees. The DXS292 marker is in the DXS98-DXS297 interval and in 3 cM proximal to DXS297.  相似文献   

9.
We have characterized and genetically mapped new polymorphic DNA markers in the q27-q28 region of the X chromosome. New informative RFLPs have been found for DXS105, DXS115, and DXS152. In particular, heterozygosity at the DXS105 locus has been increased from 25% to 52%. We have shown that DXS105 and DXS152 are contained within a 40-kb region. A multipoint linkage analysis was performed in fragile-X families and in large normal families from the Centre d'Etudes du Polymorphisme Humain (CEPH). This has allowed us to establish the order centromere-DXS144-DXS51-DXS102-F9-DXS105-FRAX A-(F8, DXS15, DXS52, DXS115). DXS102 is close to the hemophilia-B locus (z[theta] = 13.6 at theta = .02) and might thus be used as an alternative probe for diagnosis in Hemophila-B families not informative for intragenic RFLPs. DXS105 is 8% recombination closer to the fragile-X locus than F9 (z[theta] = 14.6 at theta = .08 for the F9-DXS105 linkage) and should thus be a better marker for analysis of fragile-X families. However, the DXS105 locus appears to be still loosely linked to the fragile-X locus in some families. The multipoint estimation for recombination between DXS105 and FRAXA is .16 in our set of data. Our data indicate that the region responsible for the heterogeneity in recombination between F9 and the fragile-X locus is within the DXS105-FRAXA interval.  相似文献   

10.
Summary We have localized a single-copy DNA probe, HU16 (locus DXS26), to Xq21.1. The probe was isolated from a human-mouse hybrid X;13 library and mapped with human-mouse hybrids containing different portions of the human X chromosome and DNA from male patients with different X-chromosomal deletions. The following order of loci is proposed: Xcen-(DXS72, DXS169)-(DXS232,DXS26)-DXS121-DXS233-DXS165 TCD-DXS95-DXYSl-Xqter. HU16 will be useful in the study of the putative genes that reside in Xq21 and whose defects lead to deafness and mental retardation.  相似文献   

11.
In order to investigate the origin of mutations responsible for the fragile X syndrome, two polymorphic CA repeats, one at 10 kb (FRAXAC2) and the other at 150 kb (DXS548) from the mutation target, were analyzed in normal and fragile X chromosomes. Contrary to observations made in myotonic dystrophy, fragile X mutations were not strongly associated with a single allele at the marker loci. However, significant differences in allelic and haplotypic distributions were observed between normal and fragile X chromosomes, indicating that a limited number of primary events may have been at the origin of most present-day fragile X chromosomes in Caucasian populations. We propose a putative scheme with six founder chromosomes from which most of the observed fragile X–linked haplotypes can be derived directly or by a single event at one of the marker loci, either a change of one repeat unit or a recombination between DXS548 and the mutation target. Such founder chromosomes may have carried a number of CGG repeats in an upper-normal range, from which recurrent multistep expansion mutations have arisen.  相似文献   

12.

Background

Haplotype analysis of closely associated markers has proven to be a powerful tool in kinship analysis, especially when short tandem repeats (STR) fail to resolve uncertainty in relationship analysis. STR located on the X chromosome show stronger linkage disequilibrium compared with autosomal STR. So, it is necessary to estimate the haplotype frequencies directly from population studies as linkage disequilibrium is population-specific.

Methodology and Findings

Twenty-six X-STR loci including six clusters of linked markers DXS6807-DXS8378-DXS9902(Xp22), DXS7132-DXS10079-DXS10074-DXS10075-DXS981 (Xq12), DXS6801-DXS6809-DXS6789-DXS6799(Xq21), DXS7424-DXS101-DXS7133(Xq22), DXS6804-GATA172D05(Xq23), DXS8377-DXS7423 (Xq28) and the loci DXS6800, DXS6803, DXS9898, GATA165B12, DXS6854, HPRTB and GATA31E08 were typed in four nationality (Han, Uigur, Kazakh and Mongol) samples from China (n = 1522, 876 males and 646 females). Allele and haplotype frequency as well as linkage disequilibrium data for kinship calculation were observed. The allele frequency distribution among different populations was compared. A total of 5–20 alleles for each locus were observed and altogether 289 alleles for all the selected loci were found. Allele frequency distribution for most X-STR loci is different in different populations. A total of 876 male samples were investigated by haplotype analysis and for linkage disequilibrium. A total of 89, 703, 335, 147, 39 and 63 haplotypes were observed. Haplotype diversity was 0.9584, 0.9994, 0.9935, 0.9736, 0.9427 and 0.9571 for cluster I, II, III, IV, V and VI, respectively. Eighty-two percent of the haplotype of cluster IIwas found only once. And 94% of the haplotype of cluster III show a frequency of <1%.

Conclusions

These results indicate that allele frequency distribution for most X-STR loci is population-specific and haplotypes of six clusters provide a powerful tool for kinship testing and relationship investigation. So it is necessary to obtain allele frequency and haplotypes data of the linked loci for forensic application.  相似文献   

13.
Summary Genetic linkage data from loci around the fragile X locus at Xq27.3 are analysed in the light of the hypothesis of Pembrey et al. (1985) concerning the generation of the fragile X mutation. Recombination between the four loci 52A, F9, fragile X, and ST14 is significantly decreased in meioses giving rise to the affected grandsons of normal transmitting males, when compared to families where there are no apparent normal transmitting males. There are at least two possible explanations for this phenomenon. Either the established fragile site at Xq27.3 promotes increased recombination in the distal part of the X chromosome as a secondary event, unrelated to the mechanism of formation of the fragile site itself, or an event involving recombination at or around Xq27.3 is the mechanism of formation of the full fragile X mutation, and the decreased recombination seen amongst flanking marker loci in meioses giving rise to the affected grandsons of normal transmitting males is the result of interference.  相似文献   

14.
Physical mapping studies on the human X chromosome in the region Xq27-Xqter   总被引:23,自引:0,他引:23  
We have characterized three terminal deletions of the long arm of the X chromosome. Southern analysis using Xq27/q28 probes suggests that two of the deletions have breakpoints near the fragile site at Xq27.3. Flow karyotype analysis provides an estimate of 12 X 10(6) bp for the size of the deleted region. We have not detected the deletion breakpoints by pulsed-field gel electrophoresis (PFGE) using the closet DNA probes, proximal to the fragile site. The physical distance between the breakpoints and the probes may therefore be several hundred kilobases. The use of the deletion patients has allowed a preliminary physical map of Xq27/28 to be constructed. Our data suggest that the closest probes to the fragile site on the proximal side are 4D-8 (DXS98), cX55.7 (DXS105), and cX33.2 (DXS152). PFGE studies provide evidence for the physical linkage of 4D-8, cX55.7, and cX33.2. We have also found evidence for the physical linkage of F8C, G6PD, and 767 (DXS115), distal to the fragile site.  相似文献   

15.
Linkage relationship between retinoschisis and four marker loci   总被引:3,自引:1,他引:2  
Summary The linkage relationship between the locus for juvenile retinoschisis (RS) and four X-chromosomal marker loci DXS9 (RC8), DXS16 (XUT23), DXS41 (99-6), and DXS43 (D2) has been studied in six families showing a history of this disease. Recombination with RS was found for all marker loci except DXS9. The maximum lod score is =2.66 for RS vs. SXS9 at a recombination fraction of =0.0. Multipoint linkage analysis was performed and the locus order best supported by our data is: RS-DXS9-DXS43-DXS16-DXS41.  相似文献   

16.
Sequences corresponding to the Xq28 loci DXS15, DXS52, DXS134, and DXS130 were shown to be present in a 140-kb yeast artificial chromosome (YAC XY58, isolated by Little et al.). This YAC clone appears to contain a faithful copy of this genomic region, as shown by comparison with human DNA and with a cosmid clone that contains probes St14c (part of the DXS52 sequences) and cpX67 (DXS134). cpX67 and St14c are contained in 11 kb and detect the same MspI RFLP polymorphism. A comparison of the YAC restriction map and pulsed-field gel electrophoresis data leads us to propose the following order of loci: DXS52(VNTR)-DXS33-DXF22S3-DXS130-DXS134 -DXS52-DXS15-DXS52, this whole cluster being comprised within 575 kb. The physical proximity of the DXS15, DXS52, and DXS134 loci led us to reinvestigate recombination events that had been reported between these loci in families from the Centre d'Etude du Polymorphisme Humain. Our results do not support the assumption that this region shows increased recombination.  相似文献   

17.
X-linked Amelogenesis imperfecta (AI) is a genetic disorder affecting the formation of enamel. In the present study two families, one with X-linked dominant and one with X-linked recessive AI, were studied by linkage analysis. Eleven cloned RFLP markers of known regional location were used. Evidence was obtained for linkage between the AI locus and the marker p782, defining the locus DXS85 at Xp22, by using two-point analysis. No recombination was scored between these two loci in 15 informative meioses, and a peak lod score (Zmax) of 4.45 was calculated at zero recombination fraction. Recombination was observed between the more distal locus DXS89 and AI, giving a peak lod score of 3.41 at a recombination fraction of .09. Recombination was also observed between the AI locus and the more proximal loci DXS43 and DXS41 (Zmax = 0.09 at theta max = 0.31 and Zmax = 0.61 at theta max = 0.28, respectively). Absence of linkage was observed between the AI locus and seven other loci, located proximal to DXS41 or on the long arm of the X chromosome. On the basis of two-point linkage analysis and analysis of crossover events, we propose the following order of loci at Xp22: DXS89-(AI, DXS85)-DXS43-DXS41-Xcen.  相似文献   

18.
19.
We have ordered nine polymorphic DNA markers within detailed map of the proximal part of the human X chromosome long arm, extending from band q11 to q22, by use of both physical mapping with a panel of rodent-human somatic hybrids and multipoint linkage analysis. Analysis of 44 families (including 17 families from the Centre d'Etude du Polymorphisme Humain) provided highly significant linkage data for both order and estimation of map distances between loci. We have obtained the following order: DXS1-DXS159-DXYS1-DXYS12-DXS3-(DXS94 , DXS178)-DXYS17. The most probable location of DXYS2 is between DXS159 and DXS3, close to DXYS1 and DXYS12. The high density of markers (nine loci within 30 recombination units) and the improvement in the estimation of recombination frequencies should be very useful for multipoint mapping of disease loci in this region and for diagnostic applications.  相似文献   

20.
Summary To provide a more precise genetic map of the p22.3–p21.2 region on the short arm of the human X chromosome, we performed multilocus linkage studies in an expanded database including 31 retinoschisis families and 40 normal families. Twelve loci from this region were examined. Although significant lod scores were observed between various pairs of markers by two-point linkage analysis, the confidence limits were found to be broad. The most likely gene order on the basis of multilocus analysis was Xpter-DXS89-DXS85-DXS16-(DXS207, DXS43)-DXS274-(DXS41, DXS92)-ZFX-DXS164-Xcen. All other alternative orders were excluded by odds of at least 401.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号