首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methane production was studied in a laboratory-scale 10 L anaerobic upflow sludge bed (UASB) reactor with periodic variations of the reactor temperature. On a daily basis the temperature was varied between 35 and 45 degrees C or 35 and 55 degrees C with a heating period of 6 h. Each temperature increase was accompanied by an increase in methane production and a decrease in the concentration of soluble organic matter in the effluent. In comparison to a reactor operated at 35 degrees C, a net increase in methane production of up to 22% was observed. Batch activity tests demonstrated a tolerance of mesophilic methanogenic populations to short-term, 2-6 h, temperature increases, although activity of acetoclastic methanogens decreased after 6 h exposure to a temperature of 55 degrees C. 16S sequencing of DGGE bands revealed proliferation of temperature-tolerant Methanospirillum hungatii sp. in the reactor.  相似文献   

2.
一个新的高温产氢菌及产氢特性的研究   总被引:11,自引:0,他引:11  
利用Hungate滚管技术从西藏山南地区热泉淤泥中分离到一株高温产氢的厌氧发酵细菌T42。菌株T42革兰氏染色反应为阴性,但KOH裂解试验证实其为革兰氏阳性杆菌。菌体大小为0.7μm~0.9μm×3.2μm~7μm,不运动,不产芽孢。其生长温度范围为32℃~69℃,最适生长温度为60℃~62℃,生长pH范围为5.0~8.8,最适生长pH为7.0~7.5,代时30min。有机氮源是T42菌株的必需生长因子。菌株T42利用淀粉、纤维二糖、蔗糖、麦芽糖、糊精、果糖、糖原和海藻糖等底物生长并发酵产氢,发酵葡萄糖的终产物为乙酸、乙醇、H2和CO2。G C含量为31.2mol%。系统发育分析表明菌株T42与Thermobrachium celere和Caloramator indicus位于同一分支,生理生化特征也表明菌株T42应是Thermobrachium属的一个新菌株,在中国普通微生物菌种保藏中心的保藏号为AS1.5039。菌株T42的最佳产氢初始pH为7.2,最佳产氢温度为62℃,其氢转化率为1.06mol H2/mol葡萄糖,最大产氢速率为24.0mmol H2/gDW/h。20mmol/L的Mg2 和2mmol/L的Fe2 可分别提高菌株T42的产氢量20%和23.3%,而Ni2 对其产氢无明显的作用。当菌株T42和热自养甲烷热杆菌(Methanothermobacter thermautotrophicus)Z245共培养时,由于降低了氢分压,使其葡萄糖利用率和氢产量分别提高1倍和2.8倍,发酵产物乙酸和乙醇的比例也从1提高到1.7。  相似文献   

3.
The effect of propionate toxicity at different pH values (6.5, 7.0, and 8.0) on methanogen-enriched sludge. Methanobrevibacter smithii, and Methanospirillum hungatii was studied. Organisms were grown in Balch medium 3 in Hungate tubes, and toxicity was characterized by a decrease in production of methane and in bacterial numbers. Propionate inhibited bacterial growth and cumulative methane production at concentrations as low as 20 mM. In the absence of propionate, the methanogen-enriched sludge and M. smithii showed better cumulative methane production at pH 6.5 and 7.0 than at pH 8.0. However, in the presence of propionate, these organisms showed better cumulative methane production at pH 8.0. M. hungatii differed in its behavior; the best values of cumulative methane production for this organism occurred at pH 7.0. Bacterial numbers reflected the microbial response to the presence of propionate. The highest counts of methanogenic bacteria were observed at pH 6.5 and 8.0. The numbers of methanogens were affected by the presence of propionate even at concentrations as low as 20 or 30 mM; at propionate concentrations above 80 mM, the methanogen count was affected by at least 2 orders of magnitude. Upon comparison of the responses of the pure cultures and the methanogen-enriched sludge to increasing propionate concentrations, it was found that the sensitivity of the pure cultures was similar to that of the methanogens in the sludge.  相似文献   

4.
The effect of propionate toxicity at different pH values (6.5, 7.0, and 8.0) on methanogen-enriched sludge. Methanobrevibacter smithii, and Methanospirillum hungatii was studied. Organisms were grown in Balch medium 3 in Hungate tubes, and toxicity was characterized by a decrease in production of methane and in bacterial numbers. Propionate inhibited bacterial growth and cumulative methane production at concentrations as low as 20 mM. In the absence of propionate, the methanogen-enriched sludge and M. smithii showed better cumulative methane production at pH 6.5 and 7.0 than at pH 8.0. However, in the presence of propionate, these organisms showed better cumulative methane production at pH 8.0. M. hungatii differed in its behavior; the best values of cumulative methane production for this organism occurred at pH 7.0. Bacterial numbers reflected the microbial response to the presence of propionate. The highest counts of methanogenic bacteria were observed at pH 6.5 and 8.0. The numbers of methanogens were affected by the presence of propionate even at concentrations as low as 20 or 30 mM; at propionate concentrations above 80 mM, the methanogen count was affected by at least 2 orders of magnitude. Upon comparison of the responses of the pure cultures and the methanogen-enriched sludge to increasing propionate concentrations, it was found that the sensitivity of the pure cultures was similar to that of the methanogens in the sludge.  相似文献   

5.
We isolated a methanogen from deep in the sediments of the Nankai Trough off the eastern coast of Japan. At the sampling site, the water was 950 m deep and the sediment core was collected at 247 m below the sediment surface. The isolated methanogen was named Nankai-1. Cells of Nankai-1 were nonmotile and highly irregular coccoids (average diameter, 0.8 to 2 micro m) and grew with hydrogen or formate as a catabolic substrate. Cells required acetate as a carbon source. Yeast extract and peptones were not required but increased the growth rate. The cells were mesophilic, growing most rapidly at 45 degrees C (no growth at /=55 degrees C). Cells grew with a maximum specific growth rate of 2.43 day(-1) at 45 degrees C. Cells grew at pH values between 5.0 and 8.7 but did not grow at pH 4.7 or 9.0. Strain Nankai-1 grew in a wide range of salinities, from 0.1 to 1.5 M Na(+). The described phenotypic characteristics of this novel isolate were consistent with the in situ environment of the Nankai Trough. This is the first report of a methanogenic isolate from methane hydrate-bearing sediments. Phylogenetic analysis of its 16S rRNA gene sequence indicated that it is most closely related to Methanoculleus marisnigri (99.1% sequence similarity), but DNA hybridization experiments indicated a DNA sequence similarity of only 49%. Strain Nankai-1 was also found to be phenotypically similar to M. marisnigri, but two major phenotypic differences were found: strain Nankai-1 does not require peptones, and it grows fastest at a much higher temperature. We propose a new species, Methanoculleus submarinus, with strain Nankai-1 as the type strain.  相似文献   

6.
从山西太原晋阳湖水样中分离得到一株能以甲烷为唯一碳源生长的菌株ME16.气相色谱分析表明ME16菌株能利用甲烷.ME16菌株的16S rDNA 序列与铜绿假单胞菌(Pseudomonasaeruginosa,ATCC 10145,AF094713)相似性为99%.该菌株最适培养条件为30℃、2%接种量、25%甲烷含量和培养基pH为6.0.用电化学法研究了ME16固定化细胞体系中不同含量甲烷对溶氧的响应时间以及溶氧变化与甲烷含量的关系.结果表明,加入固定化细胞后.溶氧变化在100s内达到平衡,溶氧消耗量与通入甲烷气体含量在0~16%呈线性关系,相关系数为0.9954.对样品气体8次测量,RSD为3.34%,表明该反应体系重现性良好,为该菌株进一步研究甲烷传感器奠定基础.  相似文献   

7.
A thermophilic strain of Methanosarcina, designated Methanosarcina strain TM-1, was isolated from a laboratory-scale 55 degrees C anaerobic sludge digestor by the Hungate roll-tube technique. Penicillin and d-cycloserine, inhibitors of peptidoglycan synthesis, were used as selective agents to eliminate contaminating non-methanogens. Methanosarcina strain TM-1 had a temperature optimum for methanogenesis near 50 degrees C and grew at 55 degrees C but not at 60 degrees C. Substrates used for methanogenesis and growth by Methanosarcina strain TM-1 were acetate (12-h doubling time), methanol (7- to 10-h doubling time), methanol-acetate mixtures (5-h doubling time), methylamine, and trimethylamine. When radioactively labeled acetate was the sole methanogenic substrate added to the growth medium, it was predominantly split to methane and carbon dioxide. When methanol was also present in the medium, the metabolism of acetate shifted to its oxidation and incorporation into cell material. Electrons derived from acetate oxidation apparently were used to reduce methanol. H(2)-CO(2) was not used for growth and methanogenesis by Methanosarcina strain TM-1. When presented with both H(2)-CO(2) and methanol, Methanosarcina strain TM-1 was capable of limited hydrogen metabolism during growth on methanol, but hydrogen metabolism ceased once the methanol was depleted. Methanosarcina strain TM-1 required a growth factor (or growth factors) present in the supernatant of anaerobic digestor sludge. Growth factor requirements and the inability to use H(2)-CO(2) are characteristics not found in other described Methanosarcina strains. The high numbers of Methanosarcina-like clumps in sludges from thermophilic digestors and the fast generation times reported here for Methanosarcina TM-1 indicate that Methanosarcina may play an important role in thermophilic methanogenesis.  相似文献   

8.
It has been shown that poly-3-hydroxybutyrate (PHB) of predetermined molecular weight can be obtained by varying the growth conditions of the producer strain, Azotobacter chroococcum 7B: pH, temperature, aeration, presence of sodium acetate as an additional carbon source, or growth on crude complex carbon sources (molasses, vinasse, or starch). High-molecular-weight polymer can be obtained at pH 7.0, optimal for the culture (1485 kDa), temperature 30-37 degrees C (1600-1450 kDa, respectively), and low aeration (2215 kDa). The following factors decrease PHB MW: pH deviation to the acidic (pH 6.0, 476 kDa) or alkaline (pH 8.0, 354 kDa) range or lower temperature (20 degrees C, 897 kDa). Introduction of additional carbon source (sodium acetate) at concentrations in the medium varying from 0 to 5 g/l provides an original method of production of PHB with predetermined MW in a wide range, from 270 to 1515 kDa, with high PHB content in the cell.  相似文献   

9.
Thermophilic and amylolytic aerobic bacteria were isolated from soil through a selective enrichment procedure at 60 degrees C with starch as the carbon source. One of the isolates designated as HRO10 produced glucose aside from limit dextrin as the only hydrolysis product from starch and was characterized in detail. The starch-degrading enzymes produced by strain HRO10 were determined to be alpha-amylase and alpha-glucosidase. Whereas the alpha-amylase activity was detected exclusively in the culture supernatant, alpha-glucosidase occurred intracellular, extracellular, or on the surface of the bacteria depending on the growth phase. The optimum temperature and pH required for the growth of strain HRO10 were about 50 degrees C and pH 6.5 to 7.5. The strain used different carbohydrates as the carbon source, but the maximum production of alpha-amylase occurred when 1.0% (w/v) starch or dextrin was used. The use of organic vs. inorganic nitrogen favored the production of alpha-amylase in strain HRO10. The metal ions Li+, Mg2+, and Mn2+ stimulated the production of both enzymes. Identification of strain HRO10 by physiological and molecular methods including sequencing of the 16S rDNA showed that this strain belongs to the species Geobacillus thermodenitrificans. Biochemically, strain HRO10 differs from the type strain DSM 465 only in its ability to hydrolyze starch.  相似文献   

10.
Methane formation and methane oxidation by methanogenic bacteria.   总被引:25,自引:1,他引:24       下载免费PDF全文
Methanogenic bacteria were found to form and oxidize methane at the same time. As compared to the quantity of methane formed, the amount of methane simultaneously oxidized varied between 0.3 and 0.001%, depending on the strain used. All the nine tested strains of methane producers (Methanobacterium ruminantium, Methanobacterium strain M.o.H., M. formicicum, M. thermoautotrophicum, M. arbophilicum, Methanobacterium strain AZ, Methanosarcina barkeri, Methanospirillum hungatii, and the "acetate organism") reoxidized methane to carbon dioxide. In addition, they assimilated a small part of the methane supplied into cell material. Methanol and acetate also occurred as oxidation products in M. barkeri cultures. Acetate was also formed by the "acetate organism," a methane bacterium unable to use methanogenic substrates other than acetate. Methane was the precursor of the methyl group of the acetate synthesized in the course of methane oxidation. Methane formation and its oxidation were inhibited equally by 2-bromoethanesulfonic acid. Short-term labeling experiments with M. thermoautotrophicum and M. hungatii clearly suggest that the pathway of methane oxidation is not identical with a simple back reaction of the methane formation process.  相似文献   

11.
The effects of the carbon and nitrogen sources, initial pH and incubation temperature on laccase production by Trametes modesta were evaluated using the one-factor-at-a-time method. The final optimisation was done using a central composite design resulting in a four-fold increase of the laccase activity to 178 nkat ml(-1). Response-surface analysis showed that 7.34 g l(-1) wheat bran, 0.87 g l(-1) glucose, 2.9 g l(-1) yeast extract, 0.25 g l(-1) ammonium chloride, an initial pH of 6.95 and an incubation temperature of 30.26 degrees C were the optimal conditions for laccase production. Laccase produced by T. modesta was fully active at pH 4 and at 50 degrees C. The laccase was very stable at pH 4.5 and at 40 degrees C but half-lives decreased to 120 and 125 min at higher temperature (60 degrees C) and lower pH (pH 3).  相似文献   

12.
九株嗜热产甲烷菌的特性   总被引:8,自引:0,他引:8       下载免费PDF全文
龚革  王修垣 《微生物学报》1997,37(5):378-384
从处理生活废水的厌氧污泥床的4个样品中,分离、纯化了9株嗜热的、利用H_2/CO_2和甲酸盐产甲烷的细菌。它们在细胞形态和生理特性上基本一致。细胞为直或略弯的杆状,两端钝圆,0.3~0.4×1~3μm;单个、成对,或多个相联,可达10μm以上。革兰氏阳性,不运动。细胞和菌落在荧光显微镜下呈现产甲烷菌所特有的绿色荧光。化能自养。生长温度30~75℃以下,最适为55~65℃。生长pH5.8~9.0,最适为6.9~7.6。菌株602B_3DNA中G+C含量为44.6mol%。将该菌株鉴定为嗜热甲酸甲烷杆菌的不同菌株:Methanobacterium thermoformicicum 602B_3  相似文献   

13.
Scytalidium thermophilum type culture Torula thermophila was isolated from mushroom compost and the total cellulase, endoglucanase, Avicel-adsorbable endoglucanase activities, as well as the fungal biomass generation and cellulose utilisation were analyzed in shake flask cultures with Avicel (microcrystalline cellulose) as the carbon source. Results were compared with an industrial strain of Scytalidium thermophilum type culture Humicola insolens. The pH and temperature optima for endoglucanase activities during enzyme assays were also analyzed for both organisms and determined to be pH 6.0 and 65 degrees C for type culture Torula thermophila, and pH 6.5 and 60 degrees C for type culture Humicola insolens. Analysis of the effect of growth temperature showed that type culture T. thermophila can grow and produce cellulases in the range of 35 to 55 degrees C although 40 to 50 degrees C seemed to favor growth and cellulase production. Although 45 degrees C was found optimal for fungal growth, both the specific endoglucanase and Avicel-adsorbable endoglucanase activities (U/mg protein) as well as the percentage of Avicel-adsorbable endoglucanase activity reached maxima at 50 degrees C and were higher as compared to type culture H. insolens. Results indicate that type culture T. thermophila, with further optimisations, is of potential use in the industrial production of cellulases.  相似文献   

14.
Thermophilic (55 degrees C) sulfate reduction in a gas lift reactor fed with CO gas as the sole electron donor was investigated. The reactor was inoculated with mesophilic granular sludge with a high activity of CO conversion to hydrogen and carbon dioxide at 55 degrees C. Strong competition for H(2) was observed between methanogens and sulfate reducers, while the homoacetogens present consumed only small amounts of H(2). The methanogens appeared to be more sensitive to pH and temperature shocks imposed to the reactor, but could not be completely eliminated. The fast growth rates of the methanogens (generation time of 4.5 h) enabled them to recover fast from shocks, and they rapidly consumed more than 90% of the CO-derived H(2). Nevertheless, steep increases in sulfide production in periods with low methane production suggests that once methanogenesis is eliminated, sulfate reduction with CO-rich gas as electron donor has great potential for thermophilic biodesulfurization.  相似文献   

15.
An alkalophilic bacterial isolate identified as Bacillus pantotheneticus, isolated from saline-alkali soils of Avadh region of UP, India, was studied for the production of alkaline protease. The mutant of the isolated species showed 44% improved production over the parent strain. Organic nitrogen sources supported better protease production than the inorganic sources. The production of alkaline protease was (242 U/ml) in the medium containing molasses, which was comparable with molasses and wheat bran (285 U/ml) as carbon and nitrogen sources, respectively. Protease production was best at pH 10 and temperature 30 degrees C. The Km (for casein) was 11 mg/ml and Vmax was 380-microg tyrosine/ml/min. The enzyme was stable between pH 7 and 10.7 and temperature between 30 and 60 degrees C with a pH and temperature optimum at 8.4 and 40 degrees C, respectively. The results indicated that molasses was an optimal substrate for alkaline protease production.  相似文献   

16.
A hyperthermophilic sulfate reducer, strain 7324, was isolated from hot (75 degrees C) oil field waters from an oil production platform in the Norwegian sector of the North Sea. It was enriched on a complex medium and isolated on lactate with sulfate. The cells were nonmotile, irregular coccoid to disc shaped, and 0.3 to 1.0 mum wide. The temperature for growth was between 60 and 85 degrees C with an optimum of 76 degrees C. Lactate, pyruvate, and valerate plus H(2) were utilized as carbon and energy sources with sulfate as electron acceptor. Lactate was completely oxidized to CO(2). The cells contained an active carbon monoxide dehydrogenase but no 2-oxoglutarate dehydrogenase activity, indicating that lactate was oxidized to CO(2) via the acetyl coenzyme A/carbon monoxide dehydrogenase pathway. The cells produced small amounts of methane simultaneously with sulfate reduction. F(420) was detected in the cells which showed a blue-green fluorescence at 420 nm. On the basis of morphological, physiological, and serological features, the isolate was classified as an Archaeoglobus sp. Strain 7324 showed 100% DNA-DNA homology with A. fulgidus Z, indicating that it belongs to the species A. fulgidus. Archaeoglobus sp. has been selectively enriched and immunomagnetically captured from oil field waters from three different platforms in the North Sea. Our results show that strain 7324 may grow in oil reservoirs at 70 to 85 degrees C and contribute to hydrogen sulfide formation in this environment.  相似文献   

17.
The influence of growth parameters on the fermentative production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi was studied. The bacteriocin production was greatly affected by carbon and nitrogen sources. Strain A164 produced at least 4-fold greater bacteriocin in M17 broth supplemented with lactose than other carbon sources. The amount of 3% yeast extract was found to be the optimal organic nitrogen source. While the maximum biomass was obtained at 37 degrees C, the optimal temperature for the bacteriocin production was 30 degrees C. The bacteriocin production was also affected by pH of the culture broth. The optimal pH for growth and bacteriocin production was 6.0. Although the cell growth at pH 6.0 was nearly the same level at pH 5.5 and 6.5, the greater bacteriocin activity was observed at pH 6.0. Exponential growth took place only during an initial period of the cultivation, and then linear growth was observed. Linear growth rates increased from 0.160 g(DCW) x l(-1) x h(-1) to 0.245 g(DCW) x l(-1) x h(-1) with increases in lactose concentrations from 0.5 to 3.0%. Maximum biomass was also increased from 1.88 g(DCW) x l(-1) to 4.29 g(DCW) x l(-1). However, increase in lactose concentration did not prolong the active growth phase. After 20 h cultivation, cell growth stopped regardless of lactose concentration. Production of the bacteriocin showed primary metabolic kinetics. However, bacteriocin yield based on cell mass increased greatly during the late growth phase. A maximum activity of 131x10(3) AU x ml(-1) was obtained at early stationary growth phase (20 h) during the batch fermentation in M17L broth (3.0% lactose) at 30 degrees C and pH 6.0.  相似文献   

18.
产多聚唾液酸的菌种筛选及产酸条件   总被引:7,自引:1,他引:7  
通过对40株大肠杆菌进行产多聚唾液酸的筛选,得到一株高产多聚唾液酸菌株C-8,对该菌的一系列培养条件进行了研究。最佳培养基为:山梨醇2.5%,硫酸铵0.5%,磷酸氢二钾90mmol/L,胰蛋白陈1.5%,硫酸镁0.04%,pH7.8。在37℃,250r/min摇床培养65h,可使菌体在每毫升培养液中产多聚唾液酸1200μg。  相似文献   

19.
The K2T strain of thermophilic spore-forming bacteria was isolated from a biofilm on the surface of a corroded pipeline in an extremely deep well (4680 m, 40-72 degrees C) in the Ural. The cells are rod-shaped, motile, gram-variable. They grow on a complex medium with tryptone and yeast extract and on a synthetic medium with glucose and mineral salts without additional growth factors. The cells use a wide range of organic substances as carbon and energy sources. They exhibit a respiratory metabolism but are also capable of anaerobic growth on a nitrate-containing medium and of fermentation. Growth occurs within the 40-75 degrees C temperature range (with an optimum of 65 degrees C) and at pH 5-9. The minimum generation time (15 min) was observed at pH 7.5. Ammonium salts and nitrates are used as nitrogen sources. The G + C content of the DNA is 54.5 mol%. From the morphological, physiological, and biochemical properties and the nucleotide sequence of the 16S rRNA gene, it was concluded that the isolate K2T represents a new species of the genus Geobacillus, Geobacillus uralicus.  相似文献   

20.
Isolation and identification of a morpholine-degrading bacterium   总被引:2,自引:0,他引:2  
A gram-positive, slowly growing rod effectively utilizing morpholine as the sole source of organic carbon, nitrogen, and energy was isolated from a mixed culture in a laboratory reactor. The strain was tentatively identified as Mycobacterium aurum. Its growth characteristics at 20 degrees C and pH 6.5 were as follows: maximum specific growth rate, 0.052 h-1; half-velocity constant, 1.3 mg/liter; and yield, 0.37 g/g. The optimum temperature and pH were 31 degrees C and 6.0, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号