首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Serratia marcescens Sa-3 possesses two homoserine dehydrogenases and neither has any aspartokinase activity unlike the case ofEs-cherichia coli enzymes. The two enzymes have been separated. One of them is active with either NAD or NADP+ and has been purified about 180-fold to homogeneity. This enzyme is completely repressed by the presence of 1mm methionine or homoserine in the growth medium, but its activity is unaffected by any amino acid of the aspartate family either singly or together. In many of its properties (such as pH optimum, Km for substrate and cofactors), it resembles its counterpart inE. coli K12. Potassium ions stabilize the enzyme but are not essential for activity. Its molecular weight is around 155,000 as determined by gel filtration and approximately 76,000 by SDS-polyacrylamide gel electrophoresis. This suggests that the enzyme has two subunits (polypeptide chains) in the molecule: 8m urea has no effect on enzyme activity. This enzyme represents approximately 30% of the total homoserine dehydrogenase activity ofS. marcescens unlike inSalmonella typhimurium andE. coli K12 where it is a minor or a negligible component.  相似文献   

2.
Hoyt  J. C.  Lin  H. -P. P.  Reeves  H. C. 《Current microbiology》1994,28(2):67-69
Isocitrate lyase inEscherichia coli and inAcinetobacter calcoaceticus is phosphorylated when the cells are grown with acetate as the sole carbon source in low-phosphate mineral salts medium containing32P inorganic phosphate. The level of32P incorporation into the enzyme in both microorganisms appears to be constant throughout the entire growth cycle. Further, theresults of immunoblots and rocket immunoelectrophoresis suggest that the amount of isocitrate lyase protein, although at different levels in each microorganism, also remains constant throughout the growth cycle.  相似文献   

3.
Summary Genetic studies suggest that the so-called phosphorus-family of enzymes inN. crassa are controlled by a complex system of regulatory genes which are responsive to the level of phosphorus in the growth medium. The intracellular metabolite(s) that interact with this system to signal changes in the external phosphorus concentration has not been identified. In this study the pools of acid-soluble, phosphorus-containing, compounds are measured in wild-type and phosphorus-family enzyme regulatory mutant strains ofN. crassa before and during phosphorus starvation.Prolonged phosphorus starvation of wild-typeN. crassa failed to alter significantly the pre-starvation level of intracellular orthophosphate, suggesting that intracellular Pi would be a poor effector signal for the control of the phosphorus family enzymes. However, inorganic pyrophosphate (PPi) decreased 15-fold, and tri- and tetrapolyphosphate (PPPi and PPPPi) increased 3- to 5-fold within 15 minutes after transfer of the wild-type strain to phosphorus-free medium. Phosphate starvation of seven different regulatory gene mutant strains resulted in a rapid decrease in the PPi pool similar to that which occurred in the wild-type. However, only two of these seven strains showed increased PPPi and PPPPi pools following phosphate starvation. Additional experiments demonstrated that PPi pools, but not PPPi and PPPPi pools, were unaffected by several starvation regimens other than phosphorus starvation. Metabolic studies employing H3 32PO4 showed that the pool of PPi was labeled to steady-state levels after two minutes of continuous labeling of a phosphate-sufficient culture. Furthermore, long-term steady-state labeling showed that the intracellular PPi pool was directly responsive to the decrease in the extracellular Pi concentration of the medium resulting from cell growth. Growth on phosphoethanolamine, a phosphorus source that allows a modest degree of derepression even in growing cells, resulted in lower levels of PPi than were seen in phosphate-grown cells. These observations suggest that PPi may be involved in the mechanism responsible for the control of phosphorus-family enzyme regulatory gene product activity.  相似文献   

4.
Measurable levels of activity of NAD+ kinases of actinomycetesMicrococcus luteus andCoryne-bacterium ammoniagenes were observed after substituting inorganic tripolyphosphate for ATP, whereas the enzyme from the eubacteriumEscherichia coli was not active with this substrate. Gradient PAGE found two molecular isoforms of NAD+ kinase inC. ammoniagenes andE. coli; four forms were found inM. luteus. All isoforms of this enzyme found inC. ammoniagenes andM. luteus displayed NADP-synthesizing activity in the presence of either ATP or tripolyphosphate. Because of its capability of utilizing inorganic tripolyphosphate,M. luteus is the most promising NADP producer organism.  相似文献   

5.
Summary A recombinant cosmid carrying the sucrase gene (sacA) was obtained from a colony bank ofE. coli harboring recombinant cosmids representative of theB. subtilis genome. It was shown that thesacA gene is located in a 2 kbEcoRI fragment and that the cloned sequence is homologous to the corresponding chromosomal DNA fragment. A fragment of 2 kb containing the gene was subcloned in both orientations in the bifunctional vector pHV33 and expression was further looked for inB. subtilis andE. coli. Complementation of asacA mutation was observed in Rec+ and Rec- strains ofB. subtilis. Expression of sucrase was also demonstrated inE.coli, which is normally devoid of this activity, by SDS-polyacrylamide gel electrophoresis, specific immunoprecipitation and assay of the enzyme in crude extracts. The specific activity of the enzyme depended on the orientation of the inserted fragment. The saccharolytic activity was found to be cryptic inE. coli since the presence of the recombinant plasmids did not allow the transport of [U14C] sucrose and the growth of the cells.It was shown also that the recombinant cosmid contained part of the neighboring locus (sacP) which corresponds to a component of the PEP-dependent phosphotransferase system of sucrose transport ofB. subtilis.  相似文献   

6.
The NADP+-specific glutamate dehydrogenase inEscherichia coli K12 has been shown to be phosphorylated in vivo when the cells are grown in a low-phosphate minimal salts medium containing32P inorganic phosphate. The amount of radioactivity incorporated into the enzyme is different depending on the growth phase of the culture, with the highest level of32P incorporation occurring during the mid-exponential growth phase. Previously reported studies have demonstrated that the enzyme is also phosphorylated in vitro in an ATP-dependent reaction.  相似文献   

7.
The covalent derivative of the tryptophanyl-tRNA synthetase obtained under the action of32PPi contains one mole of the covalently bound pyrophosphate (or 2 moles of orthophosphate) per mole of dimeric enzyme. Dephosphorylation with alkaline phosphatase causes practically no changes of enzymatic activity although the enzyme looses its ability to bind PPi.Enzymes tryptophanyl-tRNA synthetase (EC 6.1.1.2), alkaline phosphatase (EC 3.1.3.1), inorganic pyrophosphatase (EC 3.6.1.1)  相似文献   

8.
The genes coding ford-ribulose-1,5-bisphosphate carboxylase (RuBPCase) from an iron-oxidizing bacterium,Thiobacillus ferrooxidans, were cloned into anEscherichia coli plasmid, pUC18. The recombinant plasmid, termed pTR11, contained a 4.0-kb PstI fragment including the entire coding regions for both large and small subunits of RuBPCase.Escherichia coli carrying pTR11 did not show any CO2-fixing activity. However, a derivative plasmid with an appropriate deletion, which was placed under the control of atac promoter, conferred ribulose bisphosphate-dependent CO2-fixing activity on the host cell. Analysis of gel-filtration chromatography of the RuBPCase synthesized inE. coli revealed that it had a hexadecameric form like the native enzyme ofT. ferrooxidans.  相似文献   

9.
The population of a strain ofEscherichia coli that was resistant to nalidixic acid and streptomycin declined rapidly in samples of sterile and nonsterile Cayuga Lake water and reached an undetectable level in nonsterile water at 24 and 72 hours when counted on eosin-methylene blue (EMB) agar and half-strength trypticase soy agar (TSA), respectively. In sterile lake water amended with 10g amino acids per ml or 0.1 M phosphate,E. coli multiplied exponentially for more than 24 hours. The addition ofRhizobium leguminosarum biovarphaseoli to unamended sterile lake water prevented the decline ofE. coli, and its addition to amended sterile lake water preventedE. coli multiplication. The cell density of this strain ofE. coli declined in the first 8 hours after its introduction into an inorganic salts solution, but the bacterium then grew extensively. This increase in abundance was not observed in the presence ofR. phaseoli, andE. coli counts on half-strength TSA remained unchanged between 8 hours and 6 days. When counted on EMB agar, the abundance of the antibiotic-resistant strain ofE. coli and a strain not selected for resistance increased in solutions containing phosphate and amino acids but declined in the presence of high densities ofR. phaseoli. Many of the cells of the antibiotic-resistantE. coli strain failed to grow on antibiotic-amended EMB agar after introduction of the organism into nonsterile or sterile lake water or into an inorganic salts solution containingR. phaseoli, although colonies appeared on TSA. The data suggest thatE. coli cells grown on rich media suffer a shock when introduced into lake water because of low hypotonicity, the indigenous competing flora, or both. This shock is prevented by either phosphate buffer or by amino acids at low concentration. The shocked bacteria formed colonies on half-strength TSA. Depending on environmental conditions, the presence of a second organism either has no effect or results in an increase or decrease inE. coli numbers.  相似文献   

10.
A 2.7-kb EcoRI DNA fragment carrying aBacillus subtilis endo--1,3-1,4-glucanase gene (bglS) from theE. coli plasmid pFG1 was cloned into anEscherichia coli/yeast shuttle vector to construct a hybrid plasmid YCSH. The hybrid plasmid was used to transformSaccharomyces cerevisiae, and thebglS gene was expressed. Variation between levels ofbglS gene expression inS. cerevisiae was about 2.3-fold, depending on the orientation of the 2.7-kb DNA fragment. Assay of substrate specificity and optimal pH of the enzyme demonstrated that the enzyme encoded by YCSH (bglS) was identical with that found inB. subtilis, but the expression level ofbglS gene inS. cerevisiae (YCSH) was much lower than that inE. coli (YCSH).  相似文献   

11.
Summary To investigate the interactions of heavy metals with cells, a minimal medium for the growth of enteric bacteria using glycerol-2-phosphate as the sole phosphorus source was developed that avoided precipitation of Pb2+ with inorganic phosphate. Using this medium, spontaneous mutants ofEscherichia coli resistant to addition of Pb(NO3)2 were isolated. Thirty-five independent mutants all conferred a low level of resistance. Disk diffusion assays on solid medium were used to survey the response ofE. coli andSalmonella typhimurium mutants altered in global regulatory networks to Pb(NO3)2) and CdCl2. Strains bearing mutations inoxyR andrpoH were the most hypersensitive to these compounds. Based upon the response of strains completely devoid of isozymes needed to inactivate reactive oxygen species, this hypersensitity to lead and cadmium is attributable to alteration in superoxide dismutase rather than catalase levels. Similar analysis of chaperonedefective mutants suggests that these metals damage proteins in vivo.  相似文献   

12.
In this paper we report studies on photosynthetic formation of inorganic pyrophosphate (PPi) in three phototrophic bacteria. Formation of PPi was found in chromatophores from Rhodopseudomonas viridis but not in chromatophores from Rhodopseudomonas blastica and Rhodobacter capsulatus. The maximal rate of PPi synthesis in Rps. viridis was 0.15 mol PPi formed/(min*mol Bacteriochlorophyll) at 23°C. The synthesis of PPi was inhibited by electron transport inhibitors, uncouplers and fluoride, but was insensitive to oligomycin and venturicidin. The steady state rate of PPi synthesis under continuous illumination was about 15% of the steady-state rate of ATP synthesis. The synthesis of PPi after short light flashes was also studied. The yield of PPi after a single 1 ms flash was equivalent to approximately 1 mol PPi/500 mol Bacteriochlorophyll. In Rps. viridis chromatophores, PPi was also found to induce a membrane potential, which was sensitive to carbonyl cyanide p-trifluoromethoxyphenylhydrazone and NaF.Abbreviations BChl Bacteriochlorophyll - F0F1-ATPase Membrane bound proton translocating ATP synthase - FCCP Carbonyl cyanide p-trifluoromethoxyphenylhydrazone - H+-PPase Membrane bound proton translocating PPi synthase - TPP+ Tetraphenyl phosphonium ion - TPB- Tetraphenyl boron ion - Transmembrane electrical potential difference  相似文献   

13.
Trypanosoma cruzi infection leads to development of a chronic disease but the mechanisms that the parasite utilizes to establish a persistent infection despite activation of a potent immune response by the host are currently unknown. Unusual characteristics of T. cruzi are that it possesses cellular levels of pyrophosphate (PPi) at least 10 times higher than those of ATP and molar levels of inorganic polyphosphate (polyP) within acidocalcisomes. We characterized an inorganic soluble EF‐hand containing pyrophosphatase from T. cruzi (TcVSP) that, depending on the pH and cofactors, can hydrolyse either pyrophosphate (PPi) or polyphosphate (polyP). The enzyme is localized to both acidocalcisomes and cytosol. Overexpression of TcVSP (TcVSP‐OE) resulted in a significant decrease in cytosolic PPi, and short and long‐chain polyP levels. Additionally, the TcVSP‐OE parasites showed a significant growth defect in fibroblasts, less responsiveness to hyperosmotic stress, and reduced persistence in tissues of mice, suggesting that PPi and polyP are essential for the parasite to resist the stressful conditions in the host and to maintain a persistent infection.  相似文献   

14.
A new method for the rapid analysis of inorganic pyrophosphate (PPi) which utilizes the enzyme ATP sulfurylase is described. All components of the assay system are commercially available and inexpensive. The assay is linear over the range of 0.5–50.0 nmol of PPi and is not affected by inorganic phosphate. ATP and PPi can both be analyzed using this method.  相似文献   

15.
Members of the cyclophilin (Cyp) family are known to function as co-chaperones, interacting with chaperones such as heat shock protein 90, and perform important roles in protein folding under high temperature stress. In addition, they have been isolated from a wide range of organisms. However, there have been no reports on the functions of algal Cyps under other stress conditions. To study the functions of the cDNAGjCyp-1 isolated from the red alga (Griffithsia japonica), a recombinant GjCyp-1 containing a hexahistidine tag at the amino-terminus was constructed and expressed inEscherichia coli. Most of the gene product expressed inE. coli was organized as aggregate insoluble particles known as inclusion bodies. Thus, the optimal time, temperature, and concentration ofl(+)-arabinose for expressing the soluble and nonaggregated form of GjCyp-1 inE. coli were examined. The results indicate that the induction of Cyp, at 0.2%l(+)-arabinose for 2 h at 25°C, had a marked effect on the yield of the soluble and active form of the co-chaperone as PPlase. An expressed fusion protein, H6GjCyp-1, maintained the stability ofE. coli proteins up to-75°C. In a functional bioassay of the recombinant H6GjCyp-1, the viability ofE. coli cells overexpressing H6GjCyp-1 was compared to that of cells not expressing H6GjCyp-1 at −75°C. For all the cycles of a freeze/thaw treatment, a significant increase in viability was observed in theE. coli cells overexpressing H6GjCyp-1. The results of the GjCyp-1 bioassays, as well asin vitro studies, strongly suggest that the algal Cyp confers freeze tolerance toE. coli.  相似文献   

16.
Smirnova  G. V.  Torkhova  O. A.  Oktyabr'skii  O. N. 《Microbiology》2003,72(5):542-547
The study of glutathione status in aerobically grown Escherichia coli cultures showed that the total intracellular glutathione (GSHin + GSSGin) level falls by 63% in response to a rapid downshift in the extracellular pH from 6.5 to 5.5. The incubation of E. coli cells in the presence of 50 mM acetate or 10 g/ml gramicidin S decreased the total intracellular glutathione level by 50 and 25%, respectively. The fall in the total intracellular glutathione level was accompanied by a significant decrease in the (GSHin : GSSGin) ratio. The most profound effect on the extracellular glutathione level was exerted by gramicidin S, which augmented the total glutathione level by 1.8 times and the (GSHout : GSSGout) ratio by 2.1 times. The gramicidin S treatment and acetate stress inhibited the growth of mutant E. coli cells defective in glutathione synthesis 5 and 2 times more severely than the growth of the parent cells. The pH downshift and the exposure of E. coli cells to gramicidin S and 50 mM acetate enhanced the expression of the sodA gene coding for superoxide dismutase SodA.  相似文献   

17.
《BBA》1986,851(2):276-282
Photosynthetic formation of inorganic pyrophosphate (PPi) in Rhodospirillum rubrum chromatophores has been studied utilizing a new and sensitive method for continuous monitoring of PPi synthesis. Studies of the reaction kinetics under a variety of conditions, e.g., at different substrate concentrations and different electron-transport rates, have been performed. At very low light intensities the rate of PPi synthesis is twice the rate of ATP synthesis. Antimycin A, at a concentration which strongly inhibited the photosynthetic ATP formation, inhibited the PPi synthesis much less. Even at low rates of electron transport a significant rate of PPi synthesis is obtained. The rate of photosynthetic ATP formation is stimulated up to 20% when PPi synthesis is inhibited. It is shown that PPi synthesis and ATP synthesis compete with each other. No inhibition of pyrophosphatase activity is observed at high carbonyl cyanide p-trifluoromethoxyhydrazone concentration while ATPase activity is strongly inhibited under the same conditions.  相似文献   

18.
To improve expression ofBrevibacterium sterolicumcholesterol oxidase inEscherichia coli,we utilized theT7lacpromoter and modified the gene to encode the first 21 amino acids with high-expressionE. colicodons. These changes resulted in a 60-fold improvement of expression level. N-terminal sequencing revealed that theE. coliproduced cholesterol oxidase signal peptide is cleaved 6 amino acids closer to the N-terminus than inB. sterolicum.The recombinantE. coliproduced protein is composed of 513 amino acids with a calculatedMrof 55,374. The kinetic rate constants of the recombinant protein and theB. sterolicumproduced cholesterol oxidase are identical.  相似文献   

19.
Summary The entire structural gene for tyrocidine synthetase 1 from Bacillus brevis ATCC 8185 has been cloned and expressed in Escherichia coli. Transformed E. coli cells were screened for their ability to produce tyrocidine synthetase 1 by in situ immunoassay using antibodies against gramicidin S synthetase 2 which cross-react with tyrocidine synthetase 1. The cloned gene is within a 5.2 kb fragment of B. brevis genomic DNA and requires no external promoter for its expression in E. coli. It was also observed that cloning of the 5.2 kb insert in the opposite orientation still resulted in a high level of tyrocidine synthetase 1 expression in transformed E. coli cells. In addition, protein blotting and partial purification of the gene product by gel filtration revealed a major protein of molecular weight about 100,000 with specific d-phenylalanine dependent ATP-32PPi and 2deoxy ATP-32PPi exchange activities. These unique activities of tyrocidine synthetase 1 were not detected in protein extracts of E. coli strains carrying the vector.  相似文献   

20.
Diel vertical migration by Heterosigma akashiwo (Hada) Hada (Raphidophyceae) was monitored in a 1.5 in tall microcosm. Vertical stratification, with low salinity and low orthophosphate (Pi) concentration in the upper layer and high salinity and high Pi concentration in the lower layer, was simulated in the tank, analogous to summer stratification in the Seto Inland Sea. The phosphate metabolism of H. akashiwo during this vertical migration was studied using 31P-NMR spectroscopy. At night this species migrated to the lower phosphate-rich layer and took up inorganic phosphate (Pi) which then was accumulated as polyphosphate (PPi) by an increase in the chain length of PPi During the daytime this species migrated to the phosphate-depleted surface water and utilized the accumulated PPi for photophosphorylation by decreasing the chain length of PPi During the first night after the phosphorus was introduced to the previously impoverished waters, the cells took up inorganic phosphate, accumulating the new phosphorus nutrient internally as Pi But the cells did not convert Pi to PPi presumably due to their lack of ATP. After the second day of the experiment, conversion of Pi to PPi at night was much more rapid than on the first day, presumably due to increased ATP availability. Then the cycle continued, with uptake of Pi and conversion to PPi at night at the bottom and its utilization during the day at the surface. These data suggest that the role of PPi in the metabolism of this species appears to be as a phosphate pool which regulates the level of Pi and ATP in the cell. Diel vertical migration allows this red tide species to shuttle between the phosphate-rich lower layer and the photic upper layer in stratified waters. 31P-NMR is shown to be a valuable tool in studying the phosphorus metabolism in migrating organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号