首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Littoral flow rates within and around submersed macrophyte communities   总被引:2,自引:1,他引:1  
  • 1 The magnitude and range of water flow rates were measured within and adjacent to plant beds at different depths and among different dominant submersed plant species in the littoral zones of two lakes with contrasting morphometry.
  • 2 There was very little variability in within-bed flow rates, either for locations within or among beds. However, when significant differences occurred in within-bed flow rates, the higher rates occurred predominately near the bottom of the Scirpus subterminalis bed where the plant surface area to water volume ratio was lowest.
  • 3 Factors such as bed depth and dominant species had little effect on within-bed flow rate variance. Flows external to the plant beds were dissipated within 10–15 cm of the outer plant-bed boundary even under severe external flow-rate conditions (flow rate ~ 30cms?1).
  • 4 The mean within-bed flow rate was 0.07cms?1 and individual experiment means ranged from 0.03 to 0.46cms?1. These flow rates resulted in estimates of laminar flow boundary layer thickness, 1 mm from the leading edge of the leaf, ranging from 9.1 to 2.3mm. These estimates are much larger than submersed macrophyte leaf thicknesses themselves (<1 mm).
  相似文献   

2.
1. The vertical distribution in the nest of chambers, workers, callow workers, brood and seeds was studied in the harvester ant, Pogonomyrmex badius, in northern Florida. On each of four sample dates (May, July, October, January), six to seven colonies, chosen to represent the full range of sizes, were excavated. All chamber contents were collected and counted. Chambers were mapped and measured. In a preliminary study, two nests were excavated after preventing vertical migration by driving barriers into the wall of a pit next to the nest, severing the vertical tunnels. The vertical distribution of these barrier-nests differed little from unrestrained nests, indicating that unrestrained excavation produced a reasonable picture of vertical distributions. 2. Nest depth, chamber number and total area increased with colony size. Chamber area declined sharply with depth, as did chamber number, such that more than half of the total area was found in the upper quarter of the nest. 3. The proportion of dark-coloured (older) workers also declined strongly with depth, but this decline was weaker in the spring, and depended to a modest degree on colony size. Conversely, in the distribution of callow (young) workers, the proportion increased towards the bottom of the nest. Mean worker age was inversely related to the depth at which workers were found. The proportion of the brood also increased towards the bottom of the nest, with worker brood, sexual brood, pupae and larvae all being distributed similarly. 4. By contrast, seeds were stored at a preferred absolute depth between 40 and 100 cm. Colonies shallower than 100 cm stored seeds in their deepest chambers. Larger colonies stored most seeds in the upper third of the nest, but patterns were somewhat erratic because chambers were either filled completely with seeds or were empty. 5. Because chamber area decreased sharply with depth, the densities (individuals cm–2) of all colony members, including dark workers, were lowest near the surface and highest in the deepest parts of the nest. Here, worker densities ranged from 2 to 8 cm–2, and brood from 2 to 25 cm–2. 6. The regularity of the patterns of distribution suggests that harvester ant colonies have considerable spatial and temporal structure, which serves or is the outcome of important colony processes. A simple mechanism that could generate several of these patterns is discussed. New workers produced deep in the nest move upwards as they age. As they leave the brood zone they change from brood care to general nest duties, including increased nest excavation, leading to the top-heavy pattern of nest area. As they appear at the surface, they change to guarding and foraging. Thus, age polyethism may be partly the result of this upward migration of workers.  相似文献   

3.
Laboratory experiments were designed to estimate the ingestion rates of the scleractinian coral Stylophora pistillata under varying prey concentrations and feeding regimes and to assess the effect of feeding on the tissue and skeletal growth. Six sets of corals were incubated under two light (80 and 300 µmol photons m–2 s–1) and three feeding levels (none, fed twice, and fed six times per week) using freshly collected zooplankton. Results showed that the number of prey ingested was proportional to prey density, and no saturation of feeding capability was reached. Capture rates varied between 0.5 and 8 prey items 200 polyp–1 h–1. Corals starved for several days ingested more plankton than did fed corals. Fed colonies exhibited significantly higher levels of protein, chlorophyll a, and chlorophyll c2 per unit surface area than starved colonies. Feeding had a strong effect on tissue growth, increasing it by two to eight times. Calcification rates were also 30% higher in fed than in starved corals. Even moderate levels of feeding enhanced both tissue and skeletal growth, although the processes involved in this enhancement remain to be determined.  相似文献   

4.
Using microscopy, the gastrovascular systems of four hydroids (Eirene viridula, Cordylophora lacustris, Hydractinia symbiolongicarpus, and Podocoryna carnea) and two distantly related alcyonacean octocorals (Acrossota amboinensis and Sarcothelia sp.) were examined and compared within a phylogenetic framework. Despite a range of stolon widths (means 53–160 μm), the hydroid species exhibited similar patterns of gastrovascular flow: sequentially bidirectional flow in the stolons, driven by myoepithelial contractions emanating from the center of the colony. Unlike the hydroids, the gastrovascular system of A. amboinensis (mean stolon widths for 5 colonies, 0.57–1.21 mm) exhibited simultaneously bidirectional flow with incomplete, medial baffles (width 4–20 μm) separating the flow. Baffles visualized with transmission electron microscopy consisted of endoderm, mesoglea, and occasionally another layer of tissue. Mean flow rates of the gastrovascular fluid for seven stolons ranged from 125 to 275 μm s?1, with maximum rates of 225–700 μm s?1. In Sarcothelia sp., stolons were of comparable width (means for 13 colonies 0.55–1.4 mm) to those of A. amboinensis. These stolons, however, were divided by several partitions (width 8–25 μm), both complete and incomplete, which were spaced every 100.5±5.1 μm (mean±SE; range 27.1–283.7 μm) and appeared structurally similar to baffles. In lanes defined by these partitions, ciliary motion was visible in image sequences, and flow was unidirectional. Within a single stolon, flow moved in different directions in different lanes and changed direction by moving from lane to lane via occasional spaces between the partitions. Mean flow rates for 30 stolons ranged from 75 to 475 μm s?1, with maximum rates of 85–775 μm s?1. For both octocorals, flow rates of the gastrovascular fluid were not correlated with the width of the stolon lumen. While octocoral gastrovascular systems probably exhibit differences based on phylogenetic affinities, in all species studied thus far, gastrovascular flow is entirely driven by cilia, in contrast to the hydroid taxa.  相似文献   

5.
SUMMARY. 1. This paper examines the structural, physical and chemical characteristics of cyanobacterial hyperscums (floating scums of densely packed eyanobacteria. measuring decimetres in thickness, that are covered by a dry crust of photo-oxidized cells) from hypertrophic Hartbeespoort Dam, South Africa. 2. The hyperscum community was a cyanobacterial-baclcrial association, in which the cyanobacterium Microcystis aeruginosa comprised 98% of the biovolumc, with cell concentrations exceeding 109 ml?1. 3. The buoyancy mechanism of M. aeruginosa and evaporation at the surface led to increasing compaction of the colonies with declining distance from the surface, and the formation of three distinct, but continuous layers: a 1–2 mm dry surface crust (water content: 14%, chlorophyll a concentration: 3 g l?1), a 5–10 mm compact layer just below the crust (77% water, 1 g l?1 chlorophyll a), and a less compact layer (96% water, 200–500 mg l?1 chlorophyll a) from about 1 cm depth to the bottom, comprising the bulk of the hyperscum. 4. The crust attenuated all the incident light and reduced free gas exchange. Beneath it continuously dark anaerobic, highly reduced conditions prevailed. As the hyperscum aged over 3 months in 1984, at 10 cm depth the pH gradually declined from 6.6 to 5.9, interstitial water ammonia-N concentrations increased from 0.45 to 119 mg l?1, soluble reactive phosphorus from 2.8 to 83.3 mg l?1, and dissolved organic carbon reached a maximum of 460 mg l?1. At any point in time these concentrations declined gradually with increasing depth within the hyperscum, and declined dramatically beneath the hyperscum. Similar patterns were recorded in another hyperscum in 1986. 5. The chemical and temperature depth profiles indicated that free water movement took place around and under the hyperscum, but within it water movement was restricted to diffusion. 6. Gas bubbles composed of 28% methane. 19% CO2, 53% N2, and traces of H2 trapped within the hyperscum, and the presence of volatile fatty acids in the interstitial water were indicative of anaerobic decomposition processes mediated by fermenting and methanogenic bacteria, and N:P ratios below 1.5 in the interstitial water suggested that nitrogen was lost as gas, possibly through denitrification. 7. We hypothesize that the major sites of decay of M. aeruginosa were the crust and the compact layer beneath it, while deeper within the hyperscum this cyanobacterium could survive prolonged periods of dark anaerobic conditions. This hypothesis requires confirmation.  相似文献   

6.
Summary Seasonal changes in the activity of phytoplankton and benthic algae in relation to diurnal oxygen pulses were investigated in a 120 cm deep, brackish hypertrophic ditch. A vertical chloride gradient was built up by saline seepage and drain-water effluent. The stable chloride gradient could lead to oxygen stratification near the sediment, and to oxygen gradients towards the water surface. The oxygen gradients were rather unstable, depending on the chloride gradient and the wind velocity.Light was limiting photosynthesis both in summer and in winter. Surface oxygen maxima increased with solar radiation during summer.In summer the diatomCyclotella caused surface oxygen maxima at light saturation in the late afternoon. Simultaneously, the dominant flagellatesPeridinium andChlamydomonas produced oxygen in dim light, probably choosing their favourite light energy level by vertical migration. Oxygen fluctuations ranged from 0 to 34 mg O2.l–1 in a 100 cm vertical profile above a 20 cm anoxic layer. The amplitude of the diurnal oxygen maxima varied from 10 to 34 mg O2.l–1.In winter the water became very clear. The oxygen gradient was inverted during the day showing a characteristic oxygen maximum above the bottom, produced by benthicAchnanthes colonies.Communication no. 193.  相似文献   

7.
  • 1 We conducted survey and transplant studies to determine whether colonization and residency on soft sediments by introduced, fouling mussels (Dreissena polymorpha and D. bugensis) were affected by physical disturbance, and whether Dreissena presence in turn influenced the diversity and population densities of other benthic invertebrates. Surveys revealed that colony density was typically higher at moderate depths than at shallower and greater ones. However, the largest, midsummer colonies and greatest coverage of sediments by mussels occurred at deeper sites.
  • 2 Disturbance of transplanted colonies varied by depth and colony size, with deeper and larger colonies experiencing the lowest destruction rates. Colony destruction rate was positively correlated with current velocity adjacent to the lakebed.
  • 3 Absence of mussel colonies at shallow sites was not determined by recruitment or substrate limitation, as recruit density was higher and sediment characteristics more suitable for postveliger settlement at shallow than at deeper sites. Rather, seasonal storms have much stronger effects in shallow than in deep water.
  • 4 Mussel residency on soft sediment has profound effects on invertebrate biodiversity. Invertebrate species (taxon) richness and total abundance were positively correlated with mussel colony area. Mussel‐sediment habitat supported between 462 and 703% more taxa, and between 202 and 335% more individuals (exclusive of Dreissena) than adjacent soft‐sediment lacking mussels.
  • 5 Results from this study illustrate that physical disturbance directly limits the distribution of mussels on soft sediments, and the diversity and abundance of other benthic invertebrates in consequence.
  相似文献   

8.
1. Ophrydium versatile is a symbiotic ciliate which forms gelatinous colonies up to several centimetres in diameter in transparent temperate lakes. The ciliates are evenly spaced at the colony surface and constitute a small proportion of the surface area (7%) and volume (3.1%) of the colony, but a large proportion of organic carbon (74%) and nitrogen content (82%) (exemplified for 1 cm3 colonies). The majority of the colony volume is formed by the jelly. The biomass proportion of ciliates scales inversely with colony size, following the decline of surface area to colony volume. The largest colonies found in Danish lakes in early summer contain almost 1 million ciliates, and assuming they derive from a single ciliate undergoing exponential division, they need twenty generations and, presumably, almost a year to reach maximum size. 2. The ciliates contain numerous symbiotic zoochlorellae that constitute about 10% of ciliate volume and more than half of the carbon content. Zoochlorellae dominate oxygen metabolism of the assemblage, resulting in low light compensation points, a large diel photosynthetic surplus, and a marked dependence on light for sustained growth and ciliate metabolism. Estimated gross photosynthesis (7ng C ciliate?1 day?1) of Ophnrydium from shallow, clear waters in June greatly exceeded the estimated carbon contained in filtered bacteria and small algae (1.9ng C cilicate?1 day?1). Nitrogen and phosphorus content of the prey, however, may provide the main nutrient source consistent with the correspondence between mass-specific rates of nutrient uptake and measured relative growth rates (average 0.067 day?1, generation time 10 days). 3. The large Ophrydium colonies require increased allocation of photosynthetic carbohydrates with increasing colony size to maintain the jelly. The large colonies tend to become gas-filled, floating, mechanically destroyed and their ciliate inhabitants abandon them as swarmers. Colony formation, however, should offer protection against predators which may be more important for the natural abundance than the costs of growing in a colony.  相似文献   

9.
Massive colonies of Porites lobata on the barrier reef of Tiahura, Moorea, can be divided into four categories: living colonies, colonies consisting of 50% live coral and 50% dead skeleton, 100% dead coral and colonies which have been reduced to a basal plate. Replicate samples of each of these colony types were collected in the same vicinity of the barrier reef during October 1987. The macroborers were extracted, identified, counted and their volumes determined by displacement. Kruskal-Wallis tests showed that three different boring communities occur within these four categories of Porites colonies. Live colonies are characterised by only 3 species, the bivalve, Lithophaga laevigata; the vermetid Dendropoma maximun; and the non boring serpulid polychaete Spirobranchus. The completely dead colonies contain up to 17 boring species, with five to six individuals per 100 cm. Sipunculans are the dominant bioeroders with the most abundant species being Aspidosiphon elegans, sp A and sp B. Colonies of Porites which have been reduced to basal plates contain up to 18 boring species of which the bivalve Lithophaga hanleyana and the sipunculan Aspidosiphon sp. B are the most abundant.The cumulative volume of CaCO3 lost by boring activity increases from 0.1 cm3 per 100 cm3 in a completely dead Porites colony to 1.4 cm3 per 100 cm3 in the residual basal plates of Porites. These can be extrapolated to minimum losses of 14.2 kg m-3. We suggest that rates of boring increase with the time which has elapsed since the death of the colony and the dominant agents of boring also change with increasing age of the coral structure. There are significant additional losses of 5.25 kg m-3 CaCO3 caused by grazing echinoids and scarids.  相似文献   

10.
Colonies of Pseudomonas aeruginosa exhibit sectors that were shown to be located at specific intervals within the colony. Maxima in the distribution of sectors were observed every 5 mm as measured from the center of the colony. These maxima correlated with changes in the expansion rates of colonies. The absolute average number of sectors per colony was higher for colonies grown at higher temperatures. These results increase our understanding of colony pattern formation. Received: 2 February 1999 / Accepted: 7 April 1999  相似文献   

11.
As part of a study of reef rehabilitation, whole coral colonies (primarily Acropora, Pocillopora, Porites, Eavia and Favites) were transplanted and cemented in place onto three approximately 20 m2 areas of Armorflex concrete mats on a 0.8–1.5 m deep reef-flat in the Maldives which had been severely degraded by coral mining. Growth, in situ mortality, and losses from mats due to wave action of a total of 530 transplants were monitored over 28 months. Natural recruitment of corals to both the transplanted Armorflex areas and concrete mats without transplants was also studied. Overall survivorship of corals 28 moths after transplantation was 51%. Most losses of transplants due to wave action occurred during the first 7 months when 25% were lost, with only a further 5% of colonies being lost subsequently. Within 16 months most colonies had accreted naturally to the concretemats. Thirty-two percent of transplants which remained attached died with Acropora hyacinthus and Pocillopora perrucosa having the highest mortality rates (approx. 50% nortality over two years) and Porites lobata and P. lutea the lowest (2.8 and 8.1% mortality respectively over two years). Growth rates were very variable with a quarter to a third of transplants showing negative growth during each inter-survey period. Acropora hyacinthus, A. cytherea and A. divaricata transplants had the highest growth rates (colony mean linear radial extension 4.15–5.81 cm y-1), followed by Pocillopora verrucosa (mean 2.51 cm y-1). Faviids and poritids had lowest growth rates. Favia and Favites showed the poorest response to transplantation whilst Acropora divaricata, which combined a high growth rate with relatively low mortality, appeared particularly amenable to transplantation. Natural recruitment did not differ significantly between concrete mats with and without transplanted corals. Visible recruits wer first recorded 10 months after emplacement of the mats and were predominantly Acropora and Pocillopora. On near vertical surfaces their density was almost 18 m-2. Recruits grew fast producing many 20–30 cm diameter colonies on the mats within 3.5 years. Growth and survival of transplants are compared with results of transplantation studies in other locations. We conclude: (1) species transplanted should be selected with care as certain species are significantly more amenable than others to transplantation, (2) the choice of whether fragments or whole colonies are transplanted may profoundly influence survival, (3) considerable loss of transplants is likely from higher energy sites whatever method of attachment, (4) transplantation should, in general, be undertaken only if recovery following natural recruitment is unlikely.  相似文献   

12.
The ecology of Chroothece was studied in the highly calcareous Río Chícamo, south-east Spain, in order to explain its success there, but rarity elsewhere. The river, which originates mainly from an underground aquifer, has water with high conductivity, sulphate and nitrate but low phosphate concentrations, the latter mainly organic. Chroothece occurs in mats and in lobed colonies reaching 4 cm in the broadest dimension. The colony surface consists of one layer of cells, each of which is attached to a stalk, which dichotomizes when the cell divides; stalks often extend to the colony base. The central region of many mat cells and almost all colony cells has a yellow to orange-brown colour, associated with the numerous lipid droplets densely covering the surface of the pyrenoid and arms of the star-shaped chloroplast. Field material and laboratory isolates indicate that stalk formation occurs under moderate P limitation and both stalks and cell sheath show high phosphatase activities. This also occurred in a culture collection strain maintained for 30 years in a very P-rich medium, but then transferred to a moderately P-limiting medium (c. 0.9 mg l?1). We suggest that colony formation is initiated by aggregation of motile cells following P pulses in the water. Comparisons are made with Rivularia, a competitor in this nitrate-rich river, in spite of being a N2-fixer. One difference is that Chroothece cells lie at the periphery of the colonies and are therefore exposed to maximum sunlight, whereas Rivularia trichomes grow inside colonies with photoprotection by scytonemin. However, the ability to withstand heavy grazing pressure may be an especially important factor favouring Rivularia here.  相似文献   

13.
Nonindigenous species may exert strong effects on ecosystem structure and function. The zebra mussel (Dreissena polymorpha) has been attributed with profound changes in invaded ecosystems across eastern North America. We explored vertical profiles of water flow velocity and chlorophyll a concentration in western Lake Erie, over rocky substrates encrusted with Dreissena, to assess the extent to which mussels influence coupling between benthic and pelagic regions of the lake. Flow velocity was always low at surveyed sites (less than or equal to 2.9 cm s-1) and declined in direct proximity to the lakebed. Mean chlorophyll a concentration was also low (less than 5μg L-1) at all sites and depths. Chlorophyll a concentration was positively correlated with distance above lakebed and was lowest (0.3μg L-1) directly adjacent to the lakebed. Spatial patterns of zooplankton grazers could not explain observed vertical gradients in chlorophyll concentration. Hydrodynamic modeling revealed that filtering effects of Dreissena in a nonstratified, shallow basin depend mainly on upstream chlorophyll concentration, intensity of turbulent diffusion, feeding efficiency of the mussel colony, and the distance downstream from the leading edge of the mussel colony. In contrast to widespread perceptions that molluscs reduce phytoplankton concentration only adjacent to the lakebed, modeling scenarios indicated that depletion occurs throughout the water column. Depletion was, however, inversely proportional to distance above the lakebed. Simulation results are consistent with field-based observations made in shallow water habitats populated by large Dreissena populations in the Great Lakes and elsewhere. Results from this study indicate that zebra mussels strongly enhance coupling between pelagic and benthic regions in shallow lakes. Enhanced coupling between these regions explains, in part, high population densities of Dreissena and of many benthic invertebrates in ecosystems invaded by zebra mussels. Received 14 July 1998; accepted 25 March 1999.  相似文献   

14.
15.
Analysis of a sediment core taken from the Grangent reservoir in 2004 showed the presence of high concentrations of Microcystis aeruginosa Kütz. colonies at the sediment surface (250 colonies · mL sediment?1) and also at depths of 25–35 cm (2300 colonies·mL sediment?1) and 70 cm (600 colonies · mL sediment?1). Measurements of radioactive isotopes (7Be, 137Cs, and 241Am) along with photographic analysis of the core were used to date the deep layers: the layer located at ?30 cm dates from summer 2003, and that located at ?70 cm from 1990 to 1991. The physiological and morphological conditions of those benthic colonies were compared with those of planktonic colonies using several techniques (environmental scanning electron microscopy [ESEM], TEM, DNA markers, cellular esterases, and toxins). The ESEM observations showed that, as these colonies age, peripheral cells disappear, with no cells remaining in the mucilage of the deepest colonies (70 cm), an indication of the survival thresholds of these organisms. In the benthic phase, the physiological conditions (enzyme activity, cell division, and intracellular toxins) and ultrastructure (particularly the gas vesicles) of the cells surviving in the heart of the colony are comparable to those of the planktonic form, with all the potential needed for growth. Maintaining cellular integrity requires a process that can provide sufficient energy and is expressed in the reduced, but still existing, enzymatic activity that we measured, which is equivalent to a quiescent state.  相似文献   

16.
Sedimentary losses of phosphorus in some natural and artificial Iowa lakes   总被引:2,自引:2,他引:0  
Phosphorus sedimentation in four natural and four artificial Iowa lakes was measured by using sediment traps to determine if sedimentary phosphorus losses were greater in artificial lakes than in natural lakes and the limnological factors influencing phosphorus loss rates. Mean phosphorus sedimentation rates ranged from 13.3 to 218 mg · m–2 day–1. Although phosphorus sedimentation rates for the natural lakes as a group did not differ significantly from the rates for artificial lakes, there were significant differences among individual lakes. Phosphorus sedimentation rates also varied significantly during different seasons at different locations within a lake and at different depths within a location. Despite the variance, phosphorus sedimentation rates were strongly correlated with inorganic sediment concentrations and inorganic matter sedimentation rates, thus suggesting that inorganic sediments influence phosphorus sedimentation rates. When Iowa data were combined with data from published studies, mean sedimentation rates were directly correlated with mean chlorophyll a concentrations of the lakes. These data strongly suggest that sedimentation rates as measured by sediment traps are strongly influenced by the trophic status of a lake. Though sedimentation rates were higher in the more productive lakes, it is suggested that these rates represent only gross sedimentation rates rather than net sedimentation rates because of resuspension and resedimentation of bottom sediments.  相似文献   

17.
We studied the abundance, biomass and potential ingestion rates of meiofauna in multi-year sea ice (MYI) of the Beaufort Gyre during two icebreaker expeditions in summers 2002 and 2003. Ice cores were taken at a total of ten stations and analyzed for ice temperature, salinity, chlorophyll a (Chl a), and ice meiofauna abundances. In 2002, ice was free of snow and covered with melt ponds. In 2003, snow still covered the ice and a slush-layer was found in the ice-water interface. The vertical distribution of Chl a mostly followed C-shaped curves with elevated concentrations at the bottom and top of the ice. Ice meiofauna was mainly restricted to the bottom 10 cm of the ice and was dominated by turbellarians, harpacticoid copepods and nematodes. The meiofauna abundances (range: 8–3,000 individuals m–2) and Chl a concentration (range: 0.1–1.7 mg Chl a m–2) were similar to estimates for MYI of the Transpolar Drift, but about 2 orders of magnitude below coastal fast first-year ice estimates. Calculated potential meiofaunal ingestion rate, based on allometric equations and volume estimates from the literature, was about 1% of published daily algal production rates and was thus unlikely to constrain algal biomass accumulation.  相似文献   

18.
This is the first detailed ecological investigation of the rare moss Bryum marratii Wilson. Results show occupancy of a niche at the two study sites that is unusual amongst bryophytes, within the upper edge of saltmarsh. All colonies (n?=?120), which comprise the largest populations in Wales, occur in an elevation zone of just 57?cm and are subject to frequent inundation by higher spring tides. In total, the average location of a B. marratii colony was submerged by seawater 3.6 day-1 yr-1. Sea level rise, projected in the study region to be 30–46?cm during the current century, is a major threat to the long-term survival of these populations.  相似文献   

19.
  • 1 Zebra mussels (Dreissena polymorpha) are successful colonisers of lake littoral habitats and they interact strongly with littoral benthos. Previous research suggests that localised areas colonised by zebra mussels may be hotspots of nitrogen (N) cycling.
  • 2 The effects of zebra mussels on nitrification and denitrification rates were examined approximately every other month for 1 year in Gull Lake, Michigan, U.S.A. Littoral sediment was collected from an area free of zebra mussels and distributed into shallow trays; rocks colonised with zebra mussels were placed in half of the trays, while uncolonised rocks were placed in the remaining trays. After an incubation period of 6–8 weeks in the lake, sediment and zebra mussels were collected from the trays, replaced with new sediment and zebra mussels, and placed in the lake for the next interval. In the laboratory, sediment nitrification and denitrification rates were measured for each tray.
  • 3 Sediment nitrification rates did not increase in the presence of zebra mussels; instead nitrification rates were sensitive to changes in water temperature and increased with increasing exchangeable sediment ammonium. In contrast, denitrification rates increased in sediment trays with zebra mussels in the winter when nitrate (NO3) availability was high and when Chara did not grow in the trays.
  • 4 Sediment denitrification was NO3‐limited in all seasons, regardless of zebra mussel treatment. However, sediment in the presence of zebra mussels responded less to NO3 addition, suggesting that NO3 limitation of denitrification can be reduced by zebra mussel activity. Zebra mussels have a seasonally variable impact on sediment denitrification rates, and this may translate into altered seasonal patterns of N cycling in localised areas of lakes where they are particularly abundant.
  相似文献   

20.
以大兴安岭多年冻土区泥炭地为研究对象,通过室内模拟增温实验,研究温度升高对不同深度(0-150 cm)土壤氮循环功能基因丰度的影响。同时针对0-20 cm和20-40 cm土壤设置两个水分处理,分别为土壤原始含水量和淹水状态,研究水分变化对表层土壤氮循环功能基因丰度的影响。结果表明温度升高显著提高了活动层(0-60 cm)、过渡层(60-80 cm)、永冻层(80-100 cm)中nifH、nirK基因丰度,温度升高显著提高了活动层(0-40 cm)和过渡层(60-80 cm)中nirS基因丰度。温度升高显著提高了过渡层(60-80 cm)NH4+-N和较深永冻层(140-150 cm)NO3--N的含量,但降低了过渡层(60-80 cm)NO3--N和较深永冻层(120-150 cm)NH4+-N的含量,相关性分析表明,NH4+-N含量与nifH和nirS基因丰度呈显著正相关,NO3--N含量与nirK基因丰度呈显著正相关,说明温度升高能够通过改变微生物丰度促进过渡层固氮作用和反硝化作用。在增温条件下,淹水处理使表层土壤nirS和nirK基因丰度及NH4+-N含量降低,但提高了NO3--N含量,说明淹水造成了过度还原的条件使反硝化底物浓度降低,降低反硝化微生物活性进而抑制了土壤反硝化作用。该结果对于明确未来气候变化影响下冻土区泥炭地土壤氮循环过程具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号