首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The time course and orientation of attachment of Rhizobium trifolii 0403 to white clover root hairs was examined in slide cultures by light and electron microscopy. Inocula were grown for 5 days on defined BIII agar medium and represented the large subpopulation of fully encapsulated single cells which uniformly bind the clover lectin trifoliin A. When 10(7) cells or more were added per seedling, bacteria attached within minutes, forming randomly oriented clumps at the root hair tips. Several hours later, single cells attached polarly to the sides of the root hair. This sequence of attachment to clover root hairs was selective for R. trifolii at inoculum sizes of 10(7) to 4 X 10(8) per seedling, specifically inhibited if 2-deoxy-D-glucose, a hapten for trifoliin A, was present in the inoculum, and not observed when 4 X 10(8) cells were added to alfalfa seedling roots or to large clover root cell wall fragments which lacked trifoliin A but still had trifoliin A receptors. Once attached, R. trifolii 0403 became progressively less detachable with 2-deoxy-D-glucose. At smaller inoculum sizes (10(5) to 10(6) cells per seedling), there was no immediate clumping of R. trifolii at clover root hair tips, although polar binding of bacteria along the root hair surface was observed after 4 h. The interface between polarly attached bacteria and the root hair cell wall was shown to contain trifoliin A by immunofluorescence microscopy. Also, this interface was shown by transmission electron microscopy to contain electron-dense granules of host origin. Scanning electron microscopy revealed an accumulation of extracellular microfibrils associated with the lateral and polar surfaces of the attached bacteria, detectable after 12 h of incubation with seedling roots. At this same time, there was a significant reduction in the effectiveness of 2-deoxy-D-glucose in dislodging bacteria already attached to root hairs and an increase in firm attachment of bacteria to the root hair surface, which withstood the hydrodynamic shear forces of high-speed vortexing. These results are interpreted as a sequence of phases in attachment, beginning with specific reversible interactions between bacterial and plant surfaces (phase I attachment), followed by production of extracellular microfibrils which firmly anchor the bacterium to the root hair (phase 2 adhesion). Thus, attachment of R. trifolii to clover root hairs is a specific process requiring more than just the inherent adhesiveness of the bacteria to the plant cell wall.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Root hair deformation in the white clover/Rhizobium trifolii symbiosis   总被引:2,自引:0,他引:2  
Rhizobium trifolii most frequently infects its host white clover (Trifolium repens L.) by means of infection threads formed in markedly curled root hairs. Rhizobium infections are classified as either lateral or apical based on whether they originate in the branches or at the apex of the root hairs. A quantitative estimate of lateral and apical infection in the region of the host root (Trifolium repens L. cv. Regal Ladino) that possessed mature and immature root hairs at the time of inoculation with Rhizobium trifolii TAI (CSIRO, Canberra City, Australia) indicated that lateral infection occurred more frequently in the mature root hair region of the root. Apical infections were more common in the immature root hair region. Cell free filtrates collected from R. trifolii cultured in association with the host roots induced branching in white clover root hairs. A partially purified preparation of the branching factor was obtained from freeze-dried filtrates by ethanol extraction and ion exchange chromatography. Preliminary studies on the characteristics of these substances suggest that some are dialyzable and heat stable white others are non-dialyzable and heat labile. The dialyzable, heat-stable compounds contain neutral sugars and range between 1200 to 10000 daltons in size. In roots that were exposed to low concentrations (6–25 μg-ml?1) of these partially purified deformation factors before inoculation, the developmentally mature root hairs were deformed at the time of inoculation. Nodules appeared in the mature and immature root hair region of these plants at the same time. In plants exposed to water, nodules were observed in the immature root hair region and mature root hair regions 3 and 5 days after inoculation, respectively. Based on these results, we conclude that the nodule development was hastened in the plants exposed to the root hair-deforming substances because the mature root hairs of these plants were made infectible at the time of inoculation by this exposure.  相似文献   

3.
As part of a project meant to characterize molecules involved in nodulation, a semiquantitative microscopic assay was developed for measuring attachment of Rhizobium leguminosarum cells to pea root hair tips, i.e., the site at which R. leguminosarum initiates nodulation. This form of attachment, designated as cap formation, was dependent on the incubation pH and growth phase, with optimal attachment at pH 7.5 and with bacteria in the early stationary phase of growth. Addition of glucose to the growth medium delayed the initiation of the stationary phase and cap formation, suggesting a correlation between cap formation and carbon limitation. Attachment of R. leguminosarum was not inhibited by pea lectin haptens which makes it unlikely that lectins are involved under the tested conditions. Moreover, heterologous fast-growing rhizobia adhered equally well to pea root hair tips. Since the attachment characteristics of a Sym plasmid-cured derivative were indistinguishable from those of the wild-type strain, the Sym plasmidborne nodulation genes are not necessary for attachment. Sodium chloride and various other salts abolished attachment when present during the attachment assay in final concentrations of 100 mM. R. leguminosarum produced extracellular fibrils. A positive correlation between the percentage of fibrillated cells and the ability of the bacteria to form caps and to adhere to glass and erythrocytes was observed under various conditions, suggesting that these fibrils play a role in attachment of the bacteria to pea root hair tips, to glass, and to erythrocytes.  相似文献   

4.
The soil bacterium Rhizobium infects its leguminous host plants in temperate regions of the world mostly by way of the growing root hairs. Root hair curling is a prerequisite for root hair infection, although sidelong root hair infections occasionally have been observed. The processes underlying Rhizobium -induced root hair curling are unknown.
Computer simulation of root hair growth indicates that one-sided tip growth inhibition by Rhizobium can result in root hair curling when three conditions are simultaneously fulfilled: 1) rhizobial growth inhibition is strong enough to prevent removal out of the tip growth range: 2) root hair surface growth between the attached Rhizobium and the root hair top is inhibited; 3) rhizobial growth inhibition is limited to one side of the root hair.
The results predict that root hair curling by stimulation of tip growth is improbable. This study accentuates the need for information about the growth processes contributing to tip growth in leguminous root hairs.  相似文献   

5.
The extracellular and surface polysaccharides produced by Rhizobium species constitute a composite macromolecular interface between the bacterial cell and its environment. Several of these polysaccharides are involved in the complex series of interactions leading to the establishment of an effective Rhizobium-legume symbiosis. Extracellular heteropolysaccharides (EPSs) are found in culture supernatants, while capsular polysaccharides adhere to the cell surface. Cyclic (1–2)--d glucan is a periplasmic oligosaccharide that has also been found in the culture supernatants of some strains. The lipopolysaccharides (LPSs), which form part of the outer membrane and contain the O-somatic antigens, comprise the other major group of extracellular polysaccharides. In this review we will describe the major Rhizobium extracellular structures and their role in symbiosis with leguminous plants.The authors are with the Departamento de Microbiologia y Parasitologia, Facultad de Farmacia. Universidad de Sevilla, 41012 Sevilla, Spain  相似文献   

6.
Adsorption of Rhizobium meliloti to alfalfa roots before their infection and nodule formation shows the specificity of the symbiotic association (G. Caetano-Anollés and G. Favelukes, Appl. Environ. Microbiol. 52:377-382, 1986). The time course of specific adsorption of R. meliloti (10(3) to 10(4) cells per ml) to roots shows an initial lag period of 3 h, suggesting that either or both symbionts must become conditioned for the adsorption process. Preincubation of R. meliloti L5-30 for 3 h with dialyzed alfalfa root exudate (RE) markedly increased early adsorption of rhizobia to alfalfa roots. The activity in RE was linked to a nondialyzable, thermolabile, trypsin-sensitive factor(s), very different from the root-exuded flavonoid compounds also involved in early Rhizobium-legume interactions. The lack of activity in the RE from plants grown in 5 mM NO3- suggested its negative regulation by the nitrogen nutritional status of the plant. Preincubation of R. meliloti with heterologous clover RE did not stimulate adsorption of rhizobial cells to roots. A short pretreatment of RE with homologous (but not heterologous) strains eliminated the stimulatory activity from solution. The stimulation of adsorption of R. meliloti to alfalfa roots was strongly dependent on the growth phase of the rhizobia, being greater at the late exponential stage. Nevertheless, the capacity of R. meliloti L5-30 to eliminate from solution the stimulatory activity in RE appeared to be constitutive in the rhizobia. The low concentration of rhizobial cells used in these experiments was critical to detect the stimulation of adsorption. The early interaction of spontaneously released alfalfa root macromolecular factor(s) and free-living R. meliloti, which shows the specificity and regulatory properties characteristic of infection and nodulation, would be an initial recognition event in the rhizosphere which triggers the process of symbiotic association.  相似文献   

7.
In the Rhizobium-legume symbiosis, compatible bacteria and host plants interact through an exchange of signals: Host compounds promote the expression of bacterial biosynthetic nod (nodulation) genes leading to the production of a lipochito-oligosaccharide signal, the Nod factor (NF). The particular array of nod genes carried by a given species of Rhizobium determines the NF structure synthesized and defines the range of legume hosts by which the bacterium is recognized. Purified NF can induce early host responses even in the absence of live Rhizobium One of the earliest known host responses to NF is an oscillatory behavior of cytoplasmic calcium, or calcium spiking, in root hair cells, initially observed in Medicago spp. and subsequently characterized in four other genera (D.W. Ehrhardt, R. Wais, S.R. Long [1996] Cell 85: 673-681; S.A. Walker, V. Viprey, J.A. Downie [2000] Proc Natl Acad Sci USA 97: 13413-13418; D.W. Ehrhardt, J.A. Downie, J. Harris, R.J. Wais, and S.R. Long, unpublished data). We sought to determine whether live Rhizobium trigger a rapid calcium spiking response and whether this response is NF dependent. We show that, in the Sinorhizobium meliloti-Medicago truncatula interaction, bacteria elicit a calcium spiking response that is indistinguishable from the response to purified NF. We determine that calcium spiking is a nod gene-dependent host response. Studies of calcium spiking in M. truncatula and alfalfa (Medicago sativa) also uncovered the possibility of differences in early NF signal transduction. We further demonstrate the sufficiency of the nod genes for inducing calcium spiking by using Escherichia coli BL21 (DE3) engineered to express 11 S. meliloti nod genes.  相似文献   

8.
We have previously described an assay for the attachment of Rhizobium bacteria to pea root hair tips (cap formation) which was used as a model to study the attachment step in the nodulation process. Under all conditions tested, a positive correlation was observed between the percentage of fibrillated cells and the ability of these bacteria to form caps and to adhere to glass, suggesting that fibrils play a role in the attachment of Rhizobium leguminosarum to pea root hair tips and to glass (G. Smit, J. W. Kijne, and B. J. J. Lugtenberg, J. Bacteriol. 168:821-827, 1986). In the present paper the chemical and functional characterization of the fibrils of R. leguminosarum is described. Characterization of purified fibrils by infrared spectroscopy and cellulase treatment followed by thin-layer chromatography showed that the fibrils are composed of cellulose. Purified cellulose fibrils, as well as commercial cellulose, inhibited cap formation when present during the attachment assay. Incubation of the bacteria with purified cellulase just before the attachment assay strongly inhibited cap formation, indicating that the fibrils are directly involved in the attachment process. Tn5-induced fibril-overproducing mutants showed a greatly increased ability to form caps, whereas Tn5-induced fibril-negative mutants lost this ability. None of these Tn5 insertions appeared to be located on the Sym plasmid. Both types of mutants showed normal nodulation properties, indicating that cellulose fibrils are not a prerequisite for successful nodulation under the conditions used. The ability of the fibril-negative mutants to attach to glass was not affected by the mutations, indicating that attachment to pea root hair tips and attachment to glass are (partly) based on different mechanisms. However, growth of the rhizobia under low Ca2+ conditions strongly reduced attachment to glass and also prevented cap formation, although it had no negative effect on fibril synthesis. This phenomenon was found for several Rhizobium spp. It was concluded that both cellulose fibrils and a Ca2+ -dependent adhesin(s) are involved in the attachment of R. leguminosarum to pea root hair tips. A model cap formation as a two-step process is discussed.  相似文献   

9.
In Rhizobium japonicum strain Nitragin 61A76, morphologically distinct types of bacteria were found to occur in yeast extract-mannitol broth cultures, at both mid-log and stationary phases. Of these only the capsular form, characterized by a smooth cell envelope, storage granules (glycogen and poly-beta-hydroxybutyric acid), and an amorphous extracellular capsule, bound soybean lectin. The binding site was localized in the capsular material. Less than 1% of the bacterial population differentiated into these capsular forms, which were also able to attach to the soybean root hair surface.  相似文献   

10.
Nuclear migration during infection thread (IT) development in root hairs is essential for legume-Rhizobium symbiosis. However, little is known about the relationships between IT formation, nuclear migration, and microtubule dynamics. To this aim, we used transgenic Lotus japonicus expressing a fusion of the green fluorescent protein and tubulin-α6 from Arabidopsis thaliana to visualize in vivo dynamics of cortical microtubules (CMT) and endoplasmic microtubules (EMTs) in root hairs in the presence or absence of Mesorhizobium loti inoculation. We also examined the effect of microtubule-depolymerizing herbicide, cremart, on IT initiation and growth, since cremart is known to inhibit nuclear migration. In live imaging studies of M. loti-treated L. japonicus root hairs, EMTs were found in deformed, curled, and infected root hairs. The continuous reorganization of the EMT array linked to the nucleus appeared to be essential for the reorientation, curling, and IT initiation and the growth of zone II root hairs which are susceptible to rhizobial infection. During IT initiation, the EMTs appeared to be linked to the root hair surface surrounding the M. loti microcolonies. During IT growth, EMTs dissociated from the curled root hair tip, remained linked to the nucleus, and appeared to surround the IT tip. Lack or disorganized EMT arrays that were no longer linked to the nucleus were observed only in infection-aborted root hairs. Cremart affected IT formation and nodulation in a concentration-dependent manner, suggesting that the microtubule (MT) organization and successive nuclear migration are essential for successful nodulation in L. japonicus by M. loti.  相似文献   

11.
The ability of Rhizobium leguminosarum 248 to attach to developing Pisum sativum root hairs was investigated during various phases of bacterial growth in yeast extract-mannitol medium. Direct cell counting revealed that growth of the rhizobia transiently stopped three successive times during batch culture in yeast extract-mannitol medium. These interruptions of growth, as well as the simultaneous autoagglutination of the bacteria, appeared to be caused by manganese limitation. Rhizobia harvested during the transient phases of growth inhibition appeared to have a better attachment ability than did exponentially growing rhizobia. The attachment characteristics of these manganese-limited rhizobia were compared with those of carbon-limited rhizobia (G. Smit, J. W. Kijne, and B. J. J. Lugtenberg, J. Bacteriol. 168:821-827, 1986, and J. Bacteriol. 169:4294-4301, 1987). In contrast to the attachment of carbon-limited cells, accumulation of manganese-limited rhizobia (cap formation) was already in full progress after 10 min of incubation; significantly delayed by 3-O-methyl-D-glucose, a pea lectin haptenic monosaccharide; partially resistant to sodium chloride; and partially resistant to pretreatment of the bacteria with cellulase. Binding of single bacteria to the root hair tips was not inhibited by 3-O-methyl-D-glucose. Whereas attachment of single R. leguminosarum cells to the surface of pea root hair tips seemed to be similar for both carbon- and manganese-limited cells, the subsequent accumulation of manganese-limited rhizobia at the root hair tips is apparently accelerated by pea lectin molecules. Moreover, spot inoculation tests with rhizobia grown under various culture conditions indicated that differences in attachment between manganese- and carbon-limited R. leguminosarum cells are correlated with a significant difference in infectivity in that manganese-limited rhizobia, in contrast to carbon-limited rhizobia, are infective. This growth-medium-dependent behavior offers and explanation for the seemingly conflicting data on the involvement of host plant lectins in attachment of rhizobia to root hairs of leguminous plants. Sym plasmid-borne genes do not play a role in manganese-limitation-induced attachment of R. leguminosarum.  相似文献   

12.
Summary Five specific transposon-induced nodulation defective (Nod) mutants from different fast-growing species ofRhizobium were used as the recipients for the transfer of each of several endogenous Sym(biosis) plasmids or for recombinant plasmids that encode early nodulation and host-specificity functions. The Nod mutants were derived fromR. trifolii, R. meliloti and from a broad-host-rangeRhizobium strain which is able to nodulate both cowpea (tropical) legumes and the non-legumeParasponia. These mutants had several common features (a), they were Nod on all their known plant hosts, (b), they could not induce root hair curling (Hac) and (c), the mutations were all located on the endogenous Sym-plasmid of the respective strain. Transfer to these mutants of Sym plasmids (or recombinant plasmids) encoding heterologous information for clover nodulation (pBR1AN, pRt032, pRt038), for pea nodulation (pJB5JI, pRL1JI::Tn1831), for lucerne nodulation (pRmSL26), or for the nodulation of both tropical legumes and non-legumes (pNM4AN), was able to restore root hair curling capacity and in most cases, nodulation capacity of the original plant host(s). This demonstrated a functional conservation of at least some genes involved in root hair curling. Positive hybridization between Nod DNA sequences fromR. trifolii and from a broad-host-rangeRhizobium strain (ANU240) was obtained to other fast-growingRhizobium strains. These results indicate that at least some of the early nodulation functions are common in a broad spectrum ofRhizobium strains.  相似文献   

13.
Competitiveness and genetic variation of the Rhizobium galegae strains from the collection of the All-Russia Institute of Agricultural Microbiology, Russian Academy of Agricultural Sciences, causing nodulation of oriental goat's rue under conditions of Bashkortostan soils (lacking this rhizobial species) were studied. It was demonstrated that of all the tested strains, the strains CIAM 0702 and CIAM 0704, each carrying two megaplasmids of 1500 and 2000 MDa, were the most competitive. RAPD (random amplified polymorphic DNA) analysis showed that R. galegae strains were able to intensively exchange the genetic material in the host plant rhizosphere. We did not succeed in detecting the local root nodule bacteria that were either initially able to infect oriental goat's rue or had adapted to infecting this species due to various genetic rearrangements.  相似文献   

14.
Rhizobium symbiosis: nod factors in perspective.   总被引:10,自引:4,他引:10       下载免费PDF全文
S R Long 《The Plant cell》1996,8(10):1885-1898
  相似文献   

15.
16.
17.
A 3.2kb fragment of DNA cloned from Rhizobium leguminosarum has been shown to contain the genes necessary for the induction of root hair curling, the first observed step in the infection of leguminous plants by R. leguminosarum. The DNA sequence of this region has been determined and three open reading frames were identified: genes corresponding to these open reading frames have been called nodA, nodB and nodC and are transcribed in that order. Mutations within the nodC gene completely blocked root hair curling. However, a subcloned fragment containing only the nodC gene did not induce normal root hair curling (although some branching was observed), indicating that the nodA and B genes may also be required for normal root hair curling. From an analysis of the predicted amino acid sequences of the nodAB and C genes it appeared unlikely that their products are secreted; therefore it is concluded that the induction of root hair curling could be due to a secreted metabolite.  相似文献   

18.
More than 60 institutions and 100 researchers were involved in Rhizobium research in 1978 in Latin America. Half of these researchers were located in Argentina and Brazil. Research activity and the application of research findings vary widely among countries. Problems that plague research include 1) inadequate training of research personnel and insufficient attention paid to the Rhizobium/Legume symbiosis at agriculture schools; 2) poorly-established research priorities that do not sufficiently weigh the immediate needs for the farmers such as the identification of limiting environmental factors (e.g. nutritional deficiencies), techniques for smallscale inoculant production, and quality control of available inoculants; 3) isolation of the researchers and a lack of adequate library support; 4) poorly integrated research teams (e.g. in many institutes researchers are either microbiologists with no agricultural background or agronomists lacking microbiological training); and 5) insufficient dissemination of research findings. Problems with inoculant production and control include 1) a local dependence on national or imported inoculants rather than on locally-selected strains, 2) poor inoculant quality control which results in low inoculation success rates and subsequent discredit to the inoculation practice, and 3) high prices for inoculants. Extension problems include 1) lacking or deficient legume-promotion programs by government agencies, 2) poor contact between research and extension workers, and 3) administrators, leaders, extension workers and agronomists working in the field that lack adequate knowledge of the Rhizobium/Legume symbiosis. Immediate measures to foster extension and legume promotion programs and informal and/or official quality control are needed in Argentina, Uruguay, Brazil, Mexico, and probably Colombia. Countries where combined efforts should primarily be directed toward stimulating research and extension include Peru, Venezuela, Costa Rica, and Chile. In Ecuador, Paraguay, Bolivia, Nicaragua, Honduras, Guatemala, the Dominican Republic and Panama, priority should be given to research. Colombia should also be included in this group as national research institutions need to be strengthened. Table 2 lists these priorities more fully.  相似文献   

19.
A central event of the infection process in the Rhizobium-legume symbiosis is the modification of the host cell wall barrier to form a portal of entry large enough for bacterial penetration. Transmission electron microscopy (TEM) indicates that rhizobia enter the legume root hair through a completely eroded hole that is slightly larger than the bacterial cell and is presumably created by localized enzymatic hydrolysis of the host cell wall. In this study, we have used microscopy and enzymology to further clarify how rhizobia modify root epidermal cell walls to shed new light on the mechanism of primary host infection in the Rhizobium-legume symbiosis. Quantitative scanning electron microscopy indicated that the incidence of highly localized, partially eroded pits on legume root epidermal walls that follow the contour of the rhizobial cell was higher in host than in nonhost legume combinations, was inhibited by high nitrate supply, and was not induced by immobilized wild-type chitolipooligosaccharide Nod factors reversibly adsorbed to latex beads. TEM examination of these partially eroded, epidermal pits indicated that the amorphous, noncrystalline portions of the wall were disrupted, whereas the crystalline portions remained ultrastructurally intact. Further studies using phase-contrast and polarized light microscopy indicated that (i) the structural integrity of clover root hair walls is dependent on wall polymers that are valid substrates for cell-bound polysaccharide-degrading enzymes from rhizobia, (ii) the major site where these rhizobial enzymes can completely erode the root hair wall is highly localized at the isotropic, noncrystalline apex of the root hair tip, and (iii) the degradability of clover root hair walls by rhizobial polysaccharide-degrading enzymes is enhanced by modifications induced during growth in the presence of chitolipooligosaccharide Nod factors from wild-type clover rhizobia. The results suggest a complementary role of rhizobial cell-bound glycanases and chitolipooligosaccharides in creating the localized portals of entry for successful primary host infection.  相似文献   

20.
A technique for obtaining large numbers of root hair cells in cell cultures from soybeans is described. The cells were grown on agar containing the Prairie Regional Laboratory B5 (PRL-B5) medium for periods longer than 60 days. Mixed populations of cultured root hair cells and cortical cells were used to study the in vitro association between soybean cells and Rhizobium japonicum. The advantages of these types of root cell cultures in studies of symbiosis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号