首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The secretory transport capacity of Giardia trophozoites is perfectly adapted to the changing environment in the small intestine of the host and is able to deploy essential protective surface coats as well as molecules which act on epithelia. These lumen-dwelling parasites take up nutrients by bulk endocytosis through peripheral vesicles or by receptor-mediated transport. The environmentally-resistant cyst form is quiescent but poised for activation following stomach passage. Its versatility and fidelity notwithstanding, the giardial trafficking systems appear to be the product of a general secondary reduction process geared towards minimization of all components and machineries identified to date. Since membrane transport is directly linked to organelle biogenesis and maintenance, less complexity also means loss of organelle structures and functions. A case in point is the Golgi apparatus which is missing as a steady-state organelle system. Only a few basic Golgi functions have been experimentally demonstrated in trophozoites undergoing encystation. Similarly, mitochondrial remnants have reached a terminally minimized state and appear to be functionally restricted to essential iron-sulfur protein maturation processes. Giardia’s minimized organization combined with its genetic tractability provides unique opportunities to study basic principles of secretory transport in an uncluttered cellular environment. Not surprisingly, Giardia is gaining increasing attention as a model for the investigation of gene regulation, organelle biogenesis, and export of simple but highly protective cell wall biopolymers, a hallmark of all perorally transmitted protozoan and metazoan parasites.  相似文献   

2.
From stem cells to oocyte, Drosophila germ cells undergo a short, defined lineage. Molecular genetic analyses of a collection of female sterile mutations have indicated that a germ cell-specific organelle called the fusome has a central role at several steps in this lineage. The fusome grows from a prominent spherical organelle to an elongated and branched structure that connects all mitotic sisters in a germ cell syncytium. The organelle is assembled from proteins normally found in the membrane skeleton and, additionally, contains an extensive membranous reticulum, the probable product of differentiation-dependent vesicle trafficking. This review briefly summarizes a current view of the processes that drive germ cell differentiation, particularly the various roles that the fusome might play in regulating the developmental events. Future efforts will consider to what extent an organelle assembly-dependent model for differentiation is heuristic and whether the Drosophila fusome represents a homolog of a similar organelle in vertebrate lymphocytes.  相似文献   

3.
Organelles are reaction vessels containing metabolic pathways. As in a chemical factory, the size of the reaction vessels limits the rate of product formation. Organelle size is tuned to metabolic needs, hence reprogramming organelle size could be a novel therapeutic strategy as well as a new tool for metabolic engineering.  相似文献   

4.
Jin S  White E 《Autophagy》2008,4(5):563-566
Autophagy plays a critical protective role maintaining energy homeostasis and protein and organelle quality control. These functions are particularly important in times of metabolic stress and in cells with high energy demand such as cancer cells. In emerging cancer cells, autophagy defect may cause failure of energy homeostasis and protein and organelle quality control, leading to the accumulation of cellular damage in metabolic stress. Some manifestations of this damage, such as activation of the DNA damage response and generation of genome instability may promote tumor initiation and drive cell-autonomous tumor progression. In addition, in solid tumors, autophagy localizes to regions that are metabolically stressed. Defects in autophagy impair the survival of tumor cells in these areas, which is associated with increased cell death and inflammation. The cytokine response from inflammation may promote tumor growth and accelerate cell non-autonomous tumor progression. The overreaching theme is that autophagy protects cells from damage accumulation under conditions of metabolic stress allowing efficient tolerance and recovery from stress, and that this is a critical and novel tumor suppression mechanism. The challenge now is to define the precise aspects of autophagy, including energy homeostasis and protein and organelle turnover, that are required for the proper management of metabolic stress that suppress tumorigenesis. Furthermore, we need to be able to identify human tumors with deficient autophagy, and to develop rational cancer therapies that take advantage of the altered metabolic state and stress responses inherent to this autophagy defect.  相似文献   

5.
Mitochondrial dysfunction has long been associated with the aging process and the onset of numerous diseases. Regulation of the complex protein-folding environment within the organelle is essential for maintaining efficient metabolic output. Over time, dysregulation of protein homeostasis arises through stress induced by the accumulation of reactive oxygen species and mutations in the mitochondrial genome introduced during replication. To preserve organelle function during biogenesis, remodeling and stress, quality control of mitochondrial proteins must be monitored by molecular chaperones and proteases stationed in the four compartments of the organelle. Here, we review mitochondrial protein quality control with a focus on organelle biogenesis and aging.  相似文献   

6.
《Autophagy》2013,9(5):563-566
Autophagy plays a critical protective role maintaining energy homeostasis and protein and organelle quality control. These functions are particularly important in times of metabolic stress and in cells with high energy demand such as cancer cells. In emerging cancer cells, autophagy defect may cause failure of energy homeostasis and protein and organelle quality control, leading to the accumulation of cellular damage in metabolic stress. Some manifestations of this damage, such as activation of the DNA damage response and generation of genome instability may promote tumor initiation and drive cell-autonomous tumor progression. In addition, in solid tumors, autophagy localizes to regions that are metabolically stressed. Defects in autophagy impair the survival of tumor cells in these areas, which is associated with increased cell death and inflammation. The cytokine response from inflammation may promote tumor growth and accelerate cell non-autonomous tumor progression. The overreaching theme is that autophagy protects cells from damage accumulation under conditions of metabolic stress allowing efficient tolerance and recovery from stress, and that this is a critical and novel tumor suppression mechanism. The challenge now is to define the precise aspects of autophagy, including energy homeostasis, and protein and organelle turnover, that are required for the proper management of metabolic stress that suppress tumorigenesis. Furthermore, we need to be able to identify human tumors with deficient autophagy, and to develop rational cancer therapies that take advantage of the altered metabolic state and stress responses inherent to this autophagy defect.  相似文献   

7.
Triclosan: a widely used biocide and its link to antibiotics   总被引:5,自引:0,他引:5  
Mycoplasmas are cell wall-less bacteria at the low extreme in genome size in the known prokaryote world, and the minimal nature of their genomes is clearly reflected in their metabolic and regulatory austerity. Despite this apparent simplicity, certain species such as Mycoplasma pneumoniae possess a complex terminal organelle that functions in cytadherence, gliding motility, and cell division. The attachment organelle is a membrane-bound extension of the cell and is characterized by an electron-dense core that is part of the mycoplasma cytoskeleton, defined here for working purposes as the protein fraction that remains after extraction with the detergent Triton X-100. This review focuses on the architecture and assembly of the terminal organelle of M. pneumoniae. Characterizing the downstream consequences of defects involving attachment organelle components has made it possible to begin to elucidate the probable sequence of certain events in the biogenesis of this structure.  相似文献   

8.
The apicoplast is a non-photosynthetic relict plastid of Apicomplexa that evolved from a secondary symbiotic system. During its evolution, most of the genes derived from its alga ancestor were lost. Only genes involved in several valuable metabolic pathways, such as the synthesis of isoprenoid precursors, heme, and fatty acids, have been transferred to the host genome and retained to help these parasites adapt to a complex life cycle and various living environments. The biological function of an apicoplast is essential for most apicomplexan parasites. Considering their potential as drug targets, the metabolic functions of this symbiotic organelle have been intensively investigated through computational and biological means. Moreover, we know that not only organellar metabolic functions are linked with other organelles, but also their biogenesis processes have developed and evolved to tailor their biological functions and proper inheritance. Several distinct features have been found in the biogenesis process of apicoplasts. For example, the apicoplast borrows a dynamin-related protein (DrpA) from its host to implement organelle division. The autophagy system has also been repurposed for linking the apicoplast and centrosome during replication and the division process. However, many vital questions remain to be answered about how these parasites maintain and properly inherit this symbiotic organelle. Here we review our current knowledge about its biogenesis process and discuss several critical questions remaining to be answered in this field.  相似文献   

9.
Most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features of this species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown.  相似文献   

10.
Protein transport into and within chloroplasts   总被引:5,自引:0,他引:5  
The chloroplast is a complex organelle which carries out a wide range of metabolic processes such as light capture and the biosynthesis of carbohydrates, fatty acid and amino acids. This organelle consists of three separate membrane systems which enclose three distinct soluble phases. Most of the chloroplast proteins are imported from the cytosol and directed into the six different compartments. This import and intraorganellar sorting process makes the chloroplast an interesting and promising system for the analysis of how proteins interact with and are translocated across biological membranes.  相似文献   

11.
The peroxisome is functionally integrated into an exquisitely complex network of communicating endomembranes which is only beginning to be appreciated. Despite great advances in identifying essential components and characterizing molecular mechanisms associated with the organelle's biogenesis and function, there is a large gap in our understanding of how peroxisomes are incorporated into metabolic pathways and subcellular communication networks, how they contribute to cellular aging, and where their influence is manifested on the initiation and progression of degenerative disease. In this review, we summarize recent evidence pointing to the organelle as an important regulator of cellular redox balance with potentially far-reaching effects on cell aging and the genesis of human disease. The roles of the organelle in lipid homeostasis, anaplerotic reactions, and other critical metabolic and biochemical processes are addressed elsewhere in this volume. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of Peroxisomes in Health and Disease.  相似文献   

12.
Many heterotrophic bacteria have the ability to make polyhedral structures containing metabolic enzymes that are bounded by a unilamellar protein shell (metabolosomes or enterosomes). These bacterial organelles contain enzymes associated with a specific metabolic process (e.g. 1,2-propanediol or ethanolamine utilization). We show that the 21 gene regulon specifying the pdu organelle and propanediol utilization enzymes from Citrobacter freundii is fully functional when cloned in Escherichia coli, both producing metabolosomes and allowing propanediol utilization. Genetic manipulation of the level of specific shell proteins resulted in the formation of aberrantly shaped metabolosomes, providing evidence for their involvement as delimiting entities in the organelle. This is the first demonstration of complete recombinant metabolosome activity transferred in a single step and supports phylogenetic evidence that the pdu genes are readily horizontally transmissible. One of the predicted shell proteins (PduT) was found to have a novel Fe-S center formed between four protein subunits. The recombinant model will facilitate future experiments establishing the structure and assembly of these multiprotein assemblages and their fate when the specific metabolic function is no longer required.  相似文献   

13.
The dynamic behavior of organelles is essential for plant survival under various environmental conditions. Plant organelles, with various functions,migrate along actin filaments and contact other types of organelles, leading to physical interactions at a specific site called the membrane contact site. Recent studies have revealed the importance of physical interactions in maintaining efficient metabolite flow between organelles.In this review, we first summarize peroxisome function under different environmental conditions and growth stages to understand organelle interactions. We then discuss current knowledge regarding the interactions between peroxisome and other organelles, i.e., the oil bodies, chloroplast, and mitochondria from the perspective of metabolic and physiological regulation, with reference to various organelle interactions and techniques for estimating organelle interactions occurring in plant cells.  相似文献   

14.
Apicomplexan plastids as drug targets.   总被引:18,自引:0,他引:18  
Prokaryotic metabolic pathways in the relict plastid of apicomplexan parasites make this organelle a promising target for drug development. The parasiticidal activity of several herbicides and antibacterial antibiotics is suspected to be a result of their ability to inhibit key plastid activities.  相似文献   

15.
Peroxisomes: membrane events accompanying peroxisome proliferation   总被引:1,自引:0,他引:1  
Peroxisomes are ubiquitous organelles surrounded by a single membrane that display a variety of metabolic functions. These vary with the organism in which they occur and with environmental conditions. Peroxisomes multiply by division of existing organelles and can be formed from ER. The peroxisomal membrane, akin to the organelle itself, is a very dynamic structure that obtains building blocks from the ER. It can form diverse organized structures - lipid domains - that can be involved in regulation of various vesicle fusion processes. Additionally, this membrane may undergo extensive changes in lipid composition. We recently showed that upon proliferation the peroxisomal membrane changes its curvature in response to the activity of the peroxisomal membrane protein Pex11. Tubulation of the organelle may be important for efficient recruitment of GTPases from the dynamin protein family that is involved in organelle fission.  相似文献   

16.
Plastid acquisition, endosymbiotic associations, lateral gene transfer, organelle degeneracy or even organelle loss influence metabolic capabilities in many different protists. Thus, metabolic diversity is sculpted through the gain of new metabolic functions and moderation or loss of pathways that are often essential in the majority of eukaryotes. What is perhaps less apparent to the casual observer is that the sub-compartmentalization of ubiquitous pathways has been repeatedly remodelled during eukaryotic evolution, and the textbook pictures of intermediary metabolism established for animals, yeast and plants are not conserved in many protists. Moreover, metabolic remodelling can strongly influence the regulatory mechanisms that control carbon flux through the major metabolic pathways. Here, we provide an overview of how core metabolism has been reorganized in various unicellular eukaryotes, focusing in particular on one near universal catabolic pathway (glycolysis) and one ancient anabolic pathway (isoprenoid biosynthesis). For the example of isoprenoid biosynthesis, the compartmentalization of this process in protists often appears to have been influenced by plastid acquisition and loss, whereas for glycolysis several unexpected modes of compartmentalization have emerged. Significantly, the example of trypanosomatid glycolysis illustrates nicely how mathematical modelling and systems biology can be used to uncover or understand novel modes of pathway regulation.  相似文献   

17.
Central role of peroxisomes in isoprenoid biosynthesis   总被引:7,自引:0,他引:7  
Peroxisomes contain enzymes catalyzing a number of indispensable metabolic functions mainly related to lipid metabolism. The importance of peroxisomes in man is stressed by the existence of genetic disorders in which the biogenesis of the organelle is defective, leading to complex developmental and metabolic phenotypes. The purpose of this review is to emphasize some of the recent findings related to the localization of cholesterol biosynthetic enzymes in peroxisomes and to discuss the impairment of cholesterol biosynthesis in peroxisomal deficiency diseases.  相似文献   

18.
The malaria parasite, Plasmodium falciparum, harbours a relict plastid known as the ‘apicoplast’. The discovery of the apicoplast ushered in an exciting new prospect for drug development against the parasite. The eubacterial ancestry of the organelle offers a wealth of opportunities for the development of therapeutic interventions. Morphological, biochemical and bioinformatic studies of the apicoplast have further reinforced its ‘plant-like’ characteristics and potential as a drug target. However, we are still not sure why the apicoplast is essential for the parasite''s survival. This review explores the origins and metabolic functions of the apicoplast. In an attempt to decipher the role of the organelle within the parasite we also take a closer look at the transporters decorating the plastid to better understand the metabolic exchanges between the apicoplast and the rest of the parasite cell.  相似文献   

19.
Protein import into plant chloroplasts is a fascinating topic that is being investigated by many research groups. Since the majority of chloroplast proteins are synthesised as precursor proteins in the cytosol, they have to be posttranslationally imported into the organelle. For this purpose, most preproteins are synthesised with an N-terminal presequence, which is both necessary and sufficient for organelle recognition and translocation initiation. The import of preproteins is facilitated by two translocation machineries in the outer and inner envelope of chloroplasts, the Toc and Tic complexes, respectively. Translocation of precursor proteins across the envelope membrane has to be highly regulated to react to the metabolic requirements of the organelle. The aim of this review is to summarise the events that take place at the translocation machineries that are known so far. In addition, we focus in particular on alternative import pathways and the aspect of regulation of protein transport at the outer and inner envelope membrane.  相似文献   

20.
We have transformed varieties of wheat with a Pisum sativum glycerol-3-phosphate acyltransferase gene, and also with an Arabidopsis thaliana acyl-ACP thioesterase gene. Morphological (growth, organelle development) and metabolic changes (fatty acid labelling of chloroplast and non-chloroplast lipids) have been observed in transgenics with altered gene expression for either enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号