首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Lipopolysaccharide (LPS) from the live vaccine strain of Francisella tularensis ( F . tularensis LVS) was isolated and purified. The LPS did not stimulate lymphocytes from previously tularaemia-vaccinated individuals or lymphocytes from nonprimed individuals. However, serum antibodies from tularaemia vaccines reacted with the LPS whereas virtually no reactivity was found with antibodies from individuals not exposed to F. tularensis LVS. Antibodies of immunoglobulin class M displayed the antibody reactivity predominantly. The LPS failed to induce the mononuclear cell-derived cytokine interleukin-1 and only low levels of tumour necrosis factor were detected. Furthermore, no LPS endotoxin properties were found in galactosamine-treated mice or in the Limulus amoebocyte lysate assay. From these results it can be concluded that F. tularensis LVS possesses a lipopolysaccharide-like molecule, which does not exhibit properties of a classical endotoxin.  相似文献   

2.
The persistence of highly pathogenic avian influenza within wild bird populations has forged interest in control measures to limit a possible human pandemic. We therefore investigated the efficacy of low dose oral administration of IFN-alpha as a potential therapy against influenza infection in a murine model. We have identified an optimal low oral dose of IFN-alpha that when delivered daily as prophylactic therapy protects C57BL/6J mice from a lethal challenge with mouse adapted human influenza virus A/PR/8/34 (H1N1). These results provide strong support for the application of low dose type 1 IFN pretreatment to human influenza control.  相似文献   

3.
Francisella tularensis is an environmental bacterium capable of infecting a wide spectrum of species from mammals and birds to reptiles. It has been demonstrated that F. tularensis can invade and survive within protozoa, but an association with aquatic insects has not been thoroughly investigated. We examined the interaction of F. tularensis LVS biofilms and Culex quinquefasciatus larvae to determine the effects on larvae and adults. Our results demonstrate that F. tularensis LVS can form and persist as biofilms in natural water and that the mosquito larvae of C. quinquefasciatus readily feed on biofilm and planktonic forms of F. tularensis LVS. Larvae raised in both bacteria-only cultures suffered significant delays in pupation. Adults resulting from larvae continuously exposed to the bacteria had significantly reduced wing lengths in males and fecundity of both sexes. The bacteria may be exerting these effects through localization and persistence within the midgut and Malpighian tubule cells of the larvae. The study of oral acquisition of pathogens by insect larvae can significantly contribute to the study of environmental persistence of pathogens. We show that oral uptake of F. tularensis LVS by C. quinquefasciatus larvae results in not only larval effects but also has effects on adult mosquitoes. These effects are important in understanding both the ecology of tularemia as well as bacterial interactions with aquatic invertebrates.  相似文献   

4.
Francisella tularensis is a highly virulent zoonotic bacterial pathogen capable of infecting numerous different mammalian species, including humans. Elucidation of the pathogenic mechanisms of F. tularensis has been hampered by a lack of tools to genetically manipulate this organism. Herein we describe the use of transposome complexes to create insertion mutations in the chromosome of the F. tularensis live vaccine strain (LVS). A Tn5-derived transposon encoding kanamycin resistance and lacking a transposase gene was complexed with transposase enzyme and transformed directly into F. tularensis LVS by electroporation. An insertion frequency of 2.6 × 10−8 ± 0.87 × 10−8 per cell was consistently achieved using this method. There are 178 described Tn5 consensus target sites distributed throughout the F. tularensis genome. Twenty-two of 26 transposon insertions analyzed were within known or predicted open reading frames, but none of these insertions was associated with the Tn5 target site. Analysis of the insertions of sequentially passed strains indicated that the transposons were maintained stably at the initial insertion site after more than 270 generations. Therefore, transformation by electroporation of Tn5-based transposon-transposase complexes provided an efficient mechanism for generating random, stable chromosomal insertion mutations in F. tularensis.  相似文献   

5.
Respiratory infection of mice with Francisella novicida has recently been used as a model for the highly virulent human pathogen Francisella tularensis. Similar to F. tularensis, even small doses of F. novicida administered by respiratory routes are lethal for inbred laboratory mice. This feature obviously limits study of infection-induced immunity. Parenteral sublethal infections of mice with F. novicida are feasible, but the resulting immune responses are incompletely characterized. Here we use parenteral intradermal (i.d.) and intraperitoneal (i.p.) F. novicida infections of C57BL/6J mice to determine the role of B cells in controlling primary and secondary F. novicida infections. Despite developing comparable levels of F. novicida-primed T cells, B cell knockout mice were much more susceptible to both primary i.d. infection and secondary i.p. challenge than wild type (normal) C57BL/6J mice. Transfer of F. novicida-immune sera to either wild type C57BL/6J mice or to B cell knockout mice did not appreciably impact survival of subsequent lethal F. novicida challenge. However, F. novicida-immune mice that were depleted of T cells after priming but just before challenge survived and cleared secondary i.p. F. novicida challenge. Collectively these results indicate that B cells, if not serum antibodies, play a major role in controlling F. novicida infections in mice.  相似文献   

6.
评估转铁蛋白受体-1在土拉弗朗西斯菌LVS感染鼠巨噬细胞期间的作用.用表达GFP的土拉弗朗西斯菌LVS感染鼠巨噬细胞J774A.1.结合单抗的转铁蛋白受体-1分别用键合了Alexa594的羊抗鼠二抗显色,用小干扰RNA下调转铁蛋白受体-1的表达,进而用土拉弗朗西斯菌LVS分别感染转铁蛋白受体-1表达下调的细胞和转染无关siRNA的细胞,并进行细菌计数.分布在细胞膜上的转铁蛋白受体-1参与巨噬细胞对弗朗西斯菌的摄入.免疫印迹结果表明小于扰RNA对转铁蛋白受体-1的表达下调了大约75%.细菌入侵试验显示,在感染1 h时,转铁蛋白受体-1表达下调的细胞内细菌数量等同于对照(F=1.06.P=0.3265);而在感染24 h时,Tfr1下调样本中的细菌数量明显低于对照样本(F=24.12,P=0.0006).这些发现说明在感染早期转铁蛋白受体-1参与了细菌的摄入,这可能与弗朗西斯菌获取铁以利在胞内生存有关.转铁蛋白受体-1的下调不影响细菌的入侵,但抑制细菌在细胞内的增殖.  相似文献   

7.
Francisella tularensis is a highly virulent zoonotic bacterial pathogen capable of infecting numerous different mammalian species, including humans. Elucidation of the pathogenic mechanisms of F. tularensis has been hampered by a lack of tools to genetically manipulate this organism. Herein we describe the use of transposome complexes to create insertion mutations in the chromosome of the F. tularensis live vaccine strain (LVS). A Tn5-derived transposon encoding kanamycin resistance and lacking a transposase gene was complexed with transposase enzyme and transformed directly into F. tularensis LVS by electroporation. An insertion frequency of 2.6 x 10(-8) +/- 0.87 x 10(-8) per cell was consistently achieved using this method. There are 178 described Tn5 consensus target sites distributed throughout the F. tularensis genome. Twenty-two of 26 transposon insertions analyzed were within known or predicted open reading frames, but none of these insertions was associated with the Tn5 target site. Analysis of the insertions of sequentially passed strains indicated that the transposons were maintained stably at the initial insertion site after more than 270 generations. Therefore, transformation by electroporation of Tn5-based transposon-transposase complexes provided an efficient mechanism for generating random, stable chromosomal insertion mutations in F. tularensis.  相似文献   

8.
Osteoclasts are the primary cells responsible for bone resorption. Osteoclast formation and bone resorption activities involve processes tightly controlled by a network of cytokines. The presence of interferon gamma (IFN-gamma) receptors on osteoclasts is a necessary prerequisite for IFN-gamma to directly affect osteoclastic activity. To date, the presence of the IFN-gamma receptor on osteoclasts has not been established. This study provides evidence that osteoclasts express the IFN-gamma receptor. Specific binding of IFN-gamma to the osteoclastic receptor stimulates osteoclastic superoxide generation. The p91 and p47 components of the NADPH oxidase increase after IFN-gamma stimulation and may account for the enhanced superoxide generation. Antisense experiments targeting p91 and p47 subunits abrogate the increased osteoclastic superoxide production stimulated by IFN-gamma. Thus, superoxide generation by osteoclasts is stimulated by activation of a functional IFN-gamma receptor on the osteoclast.  相似文献   

9.
10.
Secondary exposure to respiratory syncytial virus (RSV) can lead to immunopathology and enhanced disease in vaccinated individuals. Vaccination with individual RSV proteins influences the type of secondary RSV-specific immune response that develops upon challenge RSV infection, as well as the extent of immunopathology. RSV-specific memory CD4 T cells can directly contribute to immunopathology through their cytokine production. Immunization of BALB/c mice with a recombinant vaccinia virus (vv) expressing the attachment (G) protein of RSV results in pulmonary eosinophilia upon RSV challenge, whereas immunization of mice with a vv expressing the fusion (F) protein does not. We analyzed the CD4 T-cell response to an I-Ed-restricted CD4 T-cell epitope within the F protein of RSV corresponding to amino acids 51 to 66 in an effort to better understand the similarities and differences in the immune response elicited by the G versus the F protein. Vaccination with the G protein induces a mixture of RSV G-specific Th1 and Th2 cells with a restricted T-cell receptor repertoire. In contrast, we demonstrate here that immunization with the F protein elicits a broad repertoire of RSV F-specific CD4 T cells that predominantly exhibit a Th1 phenotype. However, in the absence of gamma interferon (IFN-γ), RSV F51-66-specific CD4 T cells secreted interleukin-5, and mice developed pulmonary eosinophilia after RSV challenge. IFN-γ-deficient mice exhibited decreased weight loss compared to wild-type controls, suggesting that IFN-γ exacerbates systemic disease. These data demonstrate that IFN-γ can have both beneficial and detrimental effects during a secondary RSV infection.  相似文献   

11.
CD4 effectors generated in vitro can promote survival against a highly pathogenic influenza virus via an antibody-independent mechanism involving class II-restricted, perforin-mediated cytotoxicity. However, it is not known whether CD4 cells activated during influenza virus infection can acquire cytolytic activity that contributes to protection against lethal challenge. CD4 cells isolated from the lungs of infected mice were able to confer protection against a lethal dose of H1N1 influenza virus A/Puerto Rico 8/34 (PR8). Infection of BALB/c mice with PR8 induced a multifunctional CD4 population with proliferative capacity and ability to secrete interleukin-2 (IL-2) and tumor necrosis factor alpha (TNF-α) in the draining lymph node (DLN) and gamma interferon (IFN-γ) and IL-10 in the lung. IFN-γ-deficient CD4 cells produced larger amounts of IL-17 and similar levels of TNF-α, IL-10, and IL-2 compared to wild-type (WT) CD4 cells. Both WT and IFN-γ(-/-) CD4 cells exhibit influenza virus-specific cytotoxicity; however, IFN-γ-deficient CD4 cells did not promote recovery after lethal infection as effectively as WT CD4 cells. PR8 infection induced a population of cytolytic CD4 effectors that resided in the lung but not the DLN. These cells expressed granzyme B (GrB) and required perforin to lyse peptide-pulsed targets. Lethally infected mice given influenza virus-specific CD4 cells deficient in perforin showed greater weight loss and a slower time to recovery than mice given WT influenza virus-specific CD4 cells. Taken together, these data strengthen the concept that CD4 T cell effectors are broadly multifunctional with direct roles in promoting protection against lethal influenza virus infection.  相似文献   

12.
Oxidation of low-density lipoprotein (LDL) is thought to be a major factor in the pathophysiology of atherosclerosis. Elevated plasma homocysteine is an accepted risk factor for atherosclerosis, and may act through LDL oxidation, although this is controversial. In this study, homocysteine at physiological concentrations is shown to act as a pro-oxidant for three stages of copper-mediated LDL oxidation (initiation, conjugated diene formation and aldehyde formation), whereas at high concentration, it acts as an antioxidant. The affinity for copper of homocysteine and related copper ligands homocysteine, cystathionine and djenkolate was measured, showing that at high concentrations (100 microM) under our assay conditions, they bind essentially all of the copper present. This is used to rationalise the behaviour of these ligands, which stimulate LDL oxidation at low concentration but generally inhibit it at high concentration. Albumin strongly reduced the effect of homocystine on lag time for LDL oxidation, suggesting that the effects of homocystine are due to copper binding. In contrast, copper binding does not fully explain the pro-oxidant behaviour of low concentrations of homocysteine towards LDL, which appears in part at least to be due to stimulation of free radical production. The likely role of homocysteine in LDL oxidation in vivo is discussed in the light of these results.  相似文献   

13.
Francisella tularensis is a gram-negative intracellular bacterium that has been classified as a Category A biothreat because of its ability to induce deadly pneumonic tularemia when inhaled. In the present study, an experimental model of F. tularensis LVS intranasal infection was used to study the immune cells involved in cytokine secretion in the lungs after infection. Dramatic increases in the numbers of cells secreting IFN-gamma were observed 72 h after intranasal infection of BALB/c and C57BL/6 mice with sublethal (1000 CFU) or lethal (10,000 CFU) doses of F. tularensis LVS and the cells primarily responsible for this IFN-gamma expression were identified as CD11b+ DX5+ NK cells. The findings were further confirmed in C57BL/6 mice showing that cells responsible for IFN-gamma secretion in the lungs were CD11b+ DX5+ NK1.1+. NK cell depletion studies showed a decrease in the percentage of IFN-gamma secreting cells, due not only to a diminished proportion of IFN-gamma secreting NK cells, but also to a reduced percentage of T cells secreting IFN-gamma. The results indicate that IFN-gamma is secreted in response to respiratory infection with F. tularensis LVS, and that NK cells are the early responders responsible for IFN-gamma secretion.  相似文献   

14.
We demonstrated previously that mice treated with bacterial or oligonucleotide DNA containing unmethylated CpG motifs are transiently protected against lethal parenteral challenge with the intracellular bacterium Francisella tularensis Live Vaccine Strain (LVS). Here we explore the cellular basis of this protection. Wild-type mice that were treated with CpG oligonucleotide DNA and challenged with a lethal dose of LVS survived, while mice lacking TLR9 did not. In vitro, treatment of LVS-infected macrophages and/or naive splenocytes with oligo DNA had no impact on intracellular bacterial replication. In contrast, in vitro co-culture of LVS-infected macrophages with splenocytes obtained from mice treated with oligo DNA in vivo resulted in control of intracellular LVS growth. Control was reversed by antibodies to interferon-gamma or to tumor necrosis factor-alpha and by inhibition of nitric oxide, and to a lesser degree by antibodies to Interleukin-12. Further, splenocytes from DNA-primed normal, T cell KO, B cell KO, lymphocyte-deficient scid, or perforin KO mice all controlled intra-macrophage LVS growth. Enriched DNA-primed natural killer cells, but not B cells, clearly controlled intracellular LVS growth. Thus, NK cells contribute to DNA-mediated protection by production of cytokines including IFN-gamma and TNF-alpha, resulting in nitric oxide production and control of intracellular Francisella replication.  相似文献   

15.
Purified natural and recombinant murine gamma interferons (MuIFN-gamma) bind at 4 degrees C to cultured L929 mouse fibroblasts with comparable receptor-binding affinity (Kd = 9 x 10(-10) M). Both 125I-labeled MuIFNs are rapidly internalized by cells at 37 degrees C, although recombinant IFN is internalized somewhat more slowly than natural IFN (t1/2 = 90 sec and 45 sec, respectively). Immunoelectronmicroscopy showed that the majority of bound recombinant MuIFN-gamma was located on the plasma membrane outside of coated areas, whereas natural interferon was found mainly in coated pits. At 37 degrees C most of the recombinant molecules entered the cytoplasm in pinocytotic vesicles, while natural interferon was internalized by the specific mechanism of receptor-mediated endocytosis [1]. However, nearly equal amounts of immunocytochemically detectable molecules of both IFNs were found in the cell nucleus within 2-3 min incubation at 37 degrees C. Thus, the process of translocation of the recombinant IFN-gamma appears to differ from that of the natural product.  相似文献   

16.
Francisella tularensis is a highly infectious, facultative intracellular bacterium which causes epidemics of tularemia in both humans and mammals at regular intervals. The natural reservoir of the bacterium is largely unknown, although it has been speculated that protozoa may harbor it. To test this hypothesis, Acanthamoeba castellanii was cocultured with a strain of F. tularensis engineered to produce green fluorescent protein (GFP) in a nutrient-rich medium. GFP fluorescence within A. castellanii was then monitored by flow cytometry and fluorescence microscopy. In addition, extracellular bacteria were distinguished from intracellular bacteria by targeting with monoclonal antibodies. Electron microscopy was used to determine the intracellular location of F. tularensis in A. castellanii, and viable counts were obtained for both extracellular and intracellular bacteria. The results showed that many F. tularensis cells were located intracellularly in A. castellanii cells. The bacteria multiplied within intracellular vacuoles and eventually killed many of the host cells. F. tularensis was found in intact trophozoites, excreted vesicles, and cysts. Furthermore, F. tularensis grew faster in cocultures with A. castellanii than it did when grown alone in the same medium. This increase in growth was accompanied by a decrease in the number of A. castellanii cells. The interaction between F. tularensis and amoebae demonstrated in this study indicates that ubiquitous protozoa might be an important environmental reservoir for F. tularensis.  相似文献   

17.
Survival and growth of Francisella tularensis in Acanthamoeba castellanii   总被引:5,自引:0,他引:5  
Francisella tularensis is a highly infectious, facultative intracellular bacterium which causes epidemics of tularemia in both humans and mammals at regular intervals. The natural reservoir of the bacterium is largely unknown, although it has been speculated that protozoa may harbor it. To test this hypothesis, Acanthamoeba castellanii was cocultured with a strain of F. tularensis engineered to produce green fluorescent protein (GFP) in a nutrient-rich medium. GFP fluorescence within A. castellanii was then monitored by flow cytometry and fluorescence microscopy. In addition, extracellular bacteria were distinguished from intracellular bacteria by targeting with monoclonal antibodies. Electron microscopy was used to determine the intracellular location of F. tularensis in A. castellanii, and viable counts were obtained for both extracellular and intracellular bacteria. The results showed that many F. tularensis cells were located intracellularly in A. castellanii cells. The bacteria multiplied within intracellular vacuoles and eventually killed many of the host cells. F. tularensis was found in intact trophozoites, excreted vesicles, and cysts. Furthermore, F. tularensis grew faster in cocultures with A. castellanii than it did when grown alone in the same medium. This increase in growth was accompanied by a decrease in the number of A. castellanii cells. The interaction between F. tularensis and amoebae demonstrated in this study indicates that ubiquitous protozoa might be an important environmental reservoir for F. tularensis.  相似文献   

18.
19.
Intracellular killing of Francisella tularensis by macrophages depends on interferon-gamma (IFN-gamma)-induced activation of the cells. The importance of inducible nitric oxide synthase (iNOS) or NADPH phagocyte oxidase (phox) for the cidal activity was studied. Murine IFN-gamma-activated peritoneal exudate cells (PEC) produced nitric oxide (NO), measured as nitrite plus nitrate, and superoxide. When PEC were infected with the live vaccine strain, LVS, of F. tularensis, the number of viable bacteria was at least 1000-fold lower in the presence than in the absence of IFN-gamma after 48 h of incubation. PEC from iNOS-gene-deficient (iNOS-/-) mice killed F. tularensis LVS less effectively than did PEC from wild-type mice. PEC from phox gene-deficient (p47phox-/-) mice were capable of killing the bacteria, but killing was less efficient, although still significant, in the presence of NG-monomethyl-L-arginine (NMMLA), an inhibitor of iNOS. A decomposition catalyst of ONOO-, FeTPPS, completely reversed the IFN-gamma-induced killing of F. tularensis LVS. Under host cell-free conditions, F. tularensis LVS was exposed to S-nitroso-acetyl-penicillamine (SNAP), which generates NO, or 3-morpholinosydnonimine hydrochloride (SIN-1), which generates NO and superoxide, leading to formation of ONOO-. During 6 h of incubation, SNAP caused no killing of F. tularensis LVS, whereas effective killing occurred in the presence of equimolar concentrations of SIN-1. The results suggest that mechanisms dependent on iNOS and to a minor degree, phox, contribute to the IFN-gamma-induced macrophage killing of F. tularensis LVS. ONOO- is likely to be a major mediator of the killing.  相似文献   

20.
The Gram-negative bacterium Francisella tularensis causes tularemia, a disease which requires bacterial escape from phagosomes of infected macrophages. Once in the cytosol, the bacterium rapidly multiplies, inhibits activation of the inflammasome and ultimately causes death of the host cell. Of importance for these processes is a 33-kb gene cluster, the Francisella pathogenicity island (FPI), which is believed to encode a type VI secretion system (T6SS). In this study, we analyzed the role of the FPI-encoded proteins VgrG and DotU, which are conserved components of type VI secretion (T6S) clusters. We demonstrate that in F. tularensis LVS, VgrG was shown to form multimers, consistent with its suggested role as a trimeric membrane puncturing device in T6SSs, while the inner membrane protein DotU was shown to stabilize PdpB/IcmF, another T6SS core component. Upon infection of J774 cells, both ΔvgrG and ΔdotU mutants did not escape from phagosomes, and subsequently, did not multiply or cause cytopathogenicity. They also showed impaired activation of the inflammasome and marked attenuation in the mouse model. Moreover, all of the DotU-dependent functions investigated here required the presence of three residues that are essentially conserved among all DotU homologues. Thus, in agreement with a core function in T6S clusters, VgrG and DotU play key roles for modulation of the intracellular host response as well as for the virulence of F. tularensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号