首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antimicrobial activity of plant extract of Peganum harmala, a medicinal plant has been studied already. However, knowledge about bacterial diversity associated with different parts of host plant antagonistic to different human pathogenic bacteria is limited. In this study, bacteria were isolated from root, leaf and fruit of plant. Among 188 bacterial isolates isolated from different parts of the plant only 24 were found to be active against different pathogenic bacteria i.e. Escherichia coli, Methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecium, Enterococcus faecalis and Pseudomonas aeruginosa. These active bacterial isolates were identified on the basis of 16S rRNA gene analysis. Total population of bacteria isolated from plant was high in root, following leaf and fruit. Antagonistic bacteria were also more abundant in root as compared to leaf and fruit. Two isolates (EA5 and EA18) exhibited antagonistic activity against most of the targeted pathogenic bacteria mentioned above. Some isolates showed strong inhibition for one targeted pathogenic bacterium while weak or no inhibition for others. Most of the antagonistic isolates were active against MRSA, following E. faecium, P. aeruginosa, E. coli and E. faecalis. Taken together, our results show that medicinal plants are good source of antagonistic bacteria having inhibitory effect against clinical bacterial pathogens.  相似文献   

2.
The aim of this study was to biosynthesis silver nanoparticles from the fungus Nigrospora sphaerica isolated from soil samples and to examine their activity against five human pathogenic strains of bacteria viz. Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi and Staphylococcus aureus using disc diffusion method. The synergistic effect of silver nanoparticles in combination with commonly used antibiotic Gentamycin against the selected bacteria was also examined. The synthesized silver nanoparticles from free-cell filtrate were characterized by using UV–Vis spectrophotometer analysis, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). UV–Vis spectrophotometer analysis showed a peak at 420 nm indicating the synthesis of silver nanoparticles, FTIR analysis verified the detection of protein capping of silver nanoparticles while SEM micrographs revealed that the silver nanoparticles are dispersed and aggregated and mostly having spherical shape within the size range between 20 and 70 nm. The synthesized silver nanoparticles exhibited a varied growth inhibition activity (15–26 mm diam inhibition zones) against the tested pathogenic bacteria. A remarkable increase of bacterial growth inhibition (26–34 mm diam) was detected when a combination of silver nanoparticles and Gentamycin was used. A significant increase in fold area of antibacterial activity was observed when AgNPs in combination with Gentamycin was applied. The synthesized silver nanoparticles produced by the fungus N. sphaerica is a promising to be used as safe drug in medical therapy due to their broad spectrum against pathogenic bacteria.  相似文献   

3.
《Plant science》1986,47(1):45-55
Soybean [Glycine max (L.) Merr.] calli derived from susceptible and resistant soybean genotypes were exposed to the culture filtrates of pathogenic and non-pathogenic isolates of Phialophora gregata (Allington and Chamberlain) W. Gams. The rate of browning, growth and viability (measured by 2,3,5-triphenyltetrazolium chloride reduction) of the callus were determined after various exposure times to the fungus culture filtrates. Callus from susceptible Century, Cumberland, Corsoy 79, Harosoy and Clark 63 were sensitive to the culture filtrates of pathogenic isolates of P. gregata. Callus from Plant Introductions 437833 and 84946-2, when treated with fungal culture filtrates, did not develop browning and callus growth and cell viability were not decreased compared to untreated controls. Culture filtrates from non-pathogenic isolates of the fungus did not affect the growth of susceptible and resistant callus. Tobacco (Nicotiana tabacum L.) callus was not sensitive to the culture filtrate of a P. gregata isolate pathogenic to soybean. The fungal culture filtrate, based on limited evaluation, appears to be selective towards soybean callus. Based on this initial work, it appears that soybean callus bioassays have utility for evaluating soybean for resistance to P. gregata as well as assessing pathogenicity of fungus isolates.  相似文献   

4.
To screen antagonistic fungi against plant pathogens, dual culture assay (DCA) and culture filtrate assay (CFA) were performed with unknown soil-born fungi. Among the different fungi isolated and screened from the soil, fungal isolate ANU-301 successfully inhibited growth of different plant pathogenic fungi, Colletotrichum acutatum, Alternaria alternata, and Fusarium oxysporum, in DCA and CFA. Morphological characteristics and rDNA internal transcribed spacer sequence analysis identified ANU-301 as Aspergillus terreus. Inoculation of tomato plants with Fusarium oxysporum f. sp. lycopersici (FOL) induced severe wilting symptom; however, co-inoculation with ANU-301 significantly enhanced resistance of tomato plants against FOL. In addition, culture filtrate (CF) of ANU-301 not only showed bacterial growth inhibition activity against Dickeya chrysanthemi (Dc), but also demonstrated protective effect in potato tuber against soft rot disease. Gas chromatography-tandem mass spectrometry analysis of CF of ANU-301 identified 2,4-bis(1-methyl-1-phenylethyl)-phenol (MPP) as the most abundant compound. MPP inhibited growth of Dc, but not of FOL, in a dose-dependent manner, and protected potato tuber from the soft rot disease induced by Dc. In conclusion, Aspergillus terreus ANU-301 could be used and further tested as a potential biological control agent.  相似文献   

5.
Organismal interactions within microbial consortia and their responses to harmful intruders remain largely understudied. An important step toward the goal of understanding functional ecological interactions and their evolutionary selection is the study of increasingly complex microbial interaction systems. Here, we discovered a tripartite biosystem consisting of the fungus Aspergillus nidulans, the unicellular green alga Chlamydomonas reinhardtii, and the algicidal bacterium Streptomyces iranensis. Genetic analyses and MALDI-IMS demonstrate that the bacterium secretes the algicidal compound azalomycin F upon contact with C. reinhardtii. In co-culture, A. nidulans attracts the motile alga C. reinhardtii, which becomes embedded and surrounded by fungal mycelium and is shielded from the algicide. The filamentous fungus Sordaria macrospora was susceptible to azalomycin F and failed to protect C. reinhardtii despite chemotactically attracting the alga. Because S. macrospora was susceptible to azalomycin F, this data imply that for protection the fungus needs to be resistant. Formation of the lichen-like association between C. reinhardtii and A. nidulans increased algal growth. The protection depends on the increased amounts of membrane lipids provided by resistant fungi, thereby generating a protective shelter against the bacterial toxin. Our findings reveal a strategy whereby algae survive lethal environmental algicides through cooperation with fungi.Subject terms: Microbial ecology, Microbiome, Microbial ecology, Antibiotics, Fungal ecology  相似文献   

6.
7.
Prey organisms do not tolerate predator attack passively but react with a multitude of inducible defensive strategies. Although inducible defence strategies are well known in plants attacked by herbivorous insects, induced resistance of fungi against fungivorous animals is largely unknown. Resistance to fungivory is thought to be mediated by chemical properties of fungal tissue, i.e. by production of toxic secondary metabolites. However, whether fungi change their secondary metabolite composition to increase resistance against arthropod fungivory is unknown. We demonstrate that grazing by a soil arthropod, Folsomia candida, on the filamentous fungus Aspergillus nidulans induces a phenotype that repels future fungivores and retards fungivore growth. Arthropod-exposed colonies produced significantly higher amounts of toxic secondary metabolites and invested more in sexual reproduction relative to unchallenged fungi. Compared with vegetative tissue and asexual conidiospores, sexual fruiting bodies turned out to be highly resistant against fungivory in facultative sexual A. nidulans. This indicates that fungivore grazing triggers co-regulated allocation of resources to sexual reproduction and chemical defence in A. nidulans. Plastic investment in facultative sex and chemical defence may have evolved as a fungal strategy to escape from predation.  相似文献   

8.
BackgroundTerfezia claveryi truffles are known for their nutritional value and have been considered among traditional treatments for ophthalmic infections and ailments.ObjectivesWe sought to investigate the in vitro antimicrobial efficacy of several T. claveryi extracts from Saudi Arabia. Certain pathogenic fungi and gram-negative and gram-positive bacteria were included.MethodsDry extracts were prepared using methanol, ethyl acetate, and distilled water, while the latter was used for preparing fresh extracts. The extracts were microbiologically evaluated through the disc-diffusion agar method; the zones of inhibition of microbial growth were measured post-incubation. The minimum bactericidal concentration (MBC) and minimum inhibitory concentration (MIC) were determined in Müller-Hinton Broth through the microdilution susceptibility method. anti-biofilm activity was assessed for potent extracts.ResultsDry extracts showed potent activity (>16-mm inhibition zones) against gram-positive (Bacillus subtilis IFO3007 and Staphylococcus aureus IFO3060) and gram-negative (Pseudomonas aeruginosa IFO3448 and Escherichia coli IFO3301) bacteria. The activity against fungi was moderate (12–16-mm inhibition zones) for both Aspergillus oryzae IFO4177 and Candida albicans IFO0583; there was no activity against Aspergillus niger IFO4414 growth. Methanolic extract had the lowest MIC and MBC, exhibiting remarkable activity against B. subtilis growth. Fresh extract showed moderate activity against bacterial growth and inactivity against fungal growth. Methanolic extract showed potent anti-biofilm activity (IC50, 2.0 ± 0.18 mg/mL) against S. aureus.ConclusionsT. claveryi extracts showed antibacterial effects potentially suitable for clinical application, which warrants further in-depth analysis of their individual isolated compounds.  相似文献   

9.
An endophytic fungus isolated from Camellia sinensis, Assam, Northeastern India was identified as Colletotrichum gloeosporioides on the basis of morphological characteristics and rDNA ITS analysis. This endophytic fungus was evaluated for growth inhibition against tea pathogens Pestalotiopsis theae and Colletotrichum camelliae. One isolate of C. gloeosporioides showed strong antagonistic activity against Pestalotiopsis theae (64 %) and moderate activity against C. camelliae (37 %). Fifty percent cell-free culture filtrate from 5-day-old cultures showed highest antagonistic activity against both the pathogens although the inhibition percent was less as compared to dual culture. In the experiment of volatile compounds none of the isolates of C. gloeosporioides strains showed visible inhibition against P. theae and C. camelliae. The activity of extracellular hydrolytic enzymes chitinase and protease was also high in this culture fluid and measured 10 and 4.3 IU/μl, respectively.  相似文献   

10.
In the present study, the biosynthesis of silver nanoparticles (AgNPs) using Neurospora intermedia, as a new non-pathogenic fungus was investigated. For determination of biomass harvesting time, the effect of fungal incubation period on nanoparticle formation was investigated using UV–visible spectroscopy. Then, AgNPs were synthesized using both culture supernatant and cell-free filtrate of the fungus. Two different volume ratios (1:100 and 1:1) of the culture supernatant to the silver nitrate were employed for AgNP synthesis. In addition, cell-free filtrate and silver nitrate were mixed in presence and absence of light. Smallest average size and highest productivity were obtained when using equal volumes of the culture supernatant and silver nitrate solution as confirmed by UV–visible spectra of colloidal AgNPs. Comparing the UV–visible spectra revealed that using cell-free filtrate for AgNP synthesis resulted in the formation of particles with higher stability and monodispersity than using culture supernatant. The absence of light in cell-free filtrate mediated synthesis led to the formation of nanoparticles with the lowest rate and the highest monodispersity. The presence of elemental silver in all prepared samples was confirmed using EDX, while the crystalline nature of synthesized particles was verified by XRD. FTIR results showed the presence of functional groups which reduce Ag+ and stabilize AgNPs. The presence of nitrate reductase was confirmed in the cell-free filtrate of the fungus suggesting the potential role of this enzyme in AgNP synthesis. Synthesized particles showed significant antibacterial activity against E. coli as confirmed by examining the growth curve of bacterial cells exposed to AgNPs.  相似文献   

11.
A new trimeric hispidin derivative, phellinstatin, was isolated from a culture broth of the medicinal fungus Phellinus linteus and its structure was established by various spectral analysis. Phellinstatin strongly inhibited Staphylococcus aureus enoyl-ACP reductase with an IC50 of 6 μM and also showed antibacterial activity against S. aureus and MRSA.  相似文献   

12.
Twenty-one strains belonging to 18 species of basidiomycetes from different ecological groups of fungi were isolated from natural sources. Light and electron microscopy was used to determine the morphological properties of the cultures, which confirmed their classification as basidiomycetes and facilitated their identification in monocultures. The capacity of the fungal strains for biosynthesis of antibiotics was determined by one- or two-stage cultivation on seven nutrient media. It was established that, under submerged cultivation, antimicrobial substances were formed by 13 strains (81.25%) of 12 fungal species (Armillaria sp., Coprinus comatus, Flammulina velutipes, Hypsizygus ulmarius, Lentinus tigrinus, Lycoperdon pyriforme, Macrolepiota procera, Panellus serotinus, Pholiota aurivella, Pholiota lenta, Rhodocollybia maculate, and Sparassis crispa). The antibiotics formed were efficacious against bacterial test strains, including the methicillin-resistant strain Staphylococcus aureus (MRSA) and the strain Leuconostoc mesenteroides VKPM B-4177 that is resistant to the glycopeptide antibiotics. No antibiotic activity was revealed against fungal test cultures (Aspergillus niger INA 00760 and Saccharomyces cerevisiae RIA 259).  相似文献   

13.
A series of chalcones (3av) have been synthesized by condensation of β-ionone (1) with a variety of aldehydes (2av). The synthesized compounds have been screened for their in vitro antimicrobial activity against five bacterial and five fungal strains, using disc diffusion assay. The evaluated compounds display a wide range of activities, from completely inactive to the highly active compounds. Some of the compounds are also active against methicillin resistant staphylococcus aureus (MRSA).  相似文献   

14.
Staphylococcus aureus is one of the most frequently occurring hospital- and community-associated pathogenic bacteria featuring high morbidity and mortality. The occurrence of methicillin-resistant S. aureus (MRSA) has increased persistently over the years. Therefore, developing novel anti-MRSA drugs to circumvent drug resistance of S. aureus is highly important. Roemerine, an aporphine alkaloid, has previously been reported to exhibit antibacterial activity. The present study aimed to investigate whether roemerine can maintain these activities against S.aureus in vivo and further explore the underlying mechanism. We found that roemerine is effective in vitro against four S. aureus strains as well as in vivo against MRSA insepticemic BALB/c mice. Furthermore, roemerine was found to increase cell membrane permeability in a concentration-dependent manner. These findings suggest that roemerine may be developed as a promising compound for treating S. aureus, especially methicillin-resistant strains of these bacteria.  相似文献   

15.
In an effort to develop novel antimicrobial agents against drug-resistant bacterial infections, 5,6-dihydroimidazo[2,1-b]thiazole compounds were synthesized and tested for their antimicrobial activity. Eight compounds comprised by two sub-scaffolds were identified as hits against methicillin-resistant Staphylococcus aureus (MRSA). These hits were modified at 6-position by replacing (S)-6 to (R)-6 configuration and the (R)-isomers increased their antimicrobial activities by two-fold. The most active compound showed a MIC90 value of 3.7 μg/mL against MRSA in a standard microdilution bacterial growth inhibitory assay. This compound protected wax moth worms against MRSA at a dose of 5× MIC using a worm infectious model. This compound also exhibited inhibition of DNA gyrase activity in a DNA gyrase supercoil assay, suggesting the 5,6-dihydroimidazo[2,1-b]thiazoles may target DNA gyrase for the antimicrobial action.  相似文献   

16.
Type or The emergence of resistance to antibiotic has developed a complicated situation in the treatment of bacterial infections. Considering the antimicrobial resistance phenomenon as one of the greatest challenge of medicinal chemists for search of better anti-bacterial agents, which have potential narrow spectrum activity with low development of resistance potential and low toxicity to host. Cross-linking of peptidoglycan is a key step catalyze by Penicillin binding protein (PBP) to maintain integrity of cell wall in bacterial cell. However, these Penicillin binding protein (PBP) has developed resistance in methicillin-resistant Staphylococcus aureus (MRSA) due to acquisition of additional PBP2a. Various Quinazolinone analogues are reported in literature as potential anti-bacterial agents against MRSA. In present study new quinazolinone analogues has been designed, guided by molecular docking, In-silico and MM-GBSA study. Newly designed molecules have been synthesized by medicinal chemistry route and their characterization was done by using IR, NMR, & HR-MS techniques. Biological evaluation of synthesized compounds has been done on wild type Gram-negative (Escherichia coli), Gram-positive (Staphylococcus aureus) and resistant MRSA bacterial strains using Streptomycin, Kanamycin and Linezolid as standard drugs respectively. The in vitro evaluation results have shown that compound 5f is active with MIC value 15.625 μg/mL against S. aureus and with MIC value 31.25 μg/mL against MRSA.  相似文献   

17.
Epidemic methicillin-resistant Staphylococcus aureus (MRSA) imposes an increasing impact on public health. Due to multi-antibiotics resistance in MRSA strains, there is an urgent need to develop novel therapeutics such as effective monoclonal antibodies (mAbs) against MRSA infections. Staphylococcus aureus surface protein A (SasA), a large surface-located protein (~240 kDa), is one of MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) and a potential target for immunotherapeutic approaches against S. aureus infections. In the present study, we analyzed the sequence of SasA with bioinformatics tools and generated a protective monoclonal antibody (2H7) targeting the conserved domain of SasA. 2H7 was shown to recognize wild-type S. aureus and promote opsonophagocytic killing of S. aureus. In both sepsis and peritoneal infection models, prophylactic administration of 2H7 improved the survival of BALB/c mice challenged by S. aureus strain USA300 and ST239 (prevalent MRSA clones in North America and Asian countries, respectively) and enhanced bacterial clearance in kidneys. Additionally, 2H7 prophylaxis prevented the formation of intraperitoneal abscess in a murine model of peritoneal infection and therapeutic administration of 2H7 showed protective efficacy in a murine sepsis model. Our results presented here provide supporting evidences that an anti-SasA mAb might be a potential component in an antibody-based immunotherapeutic treatment of MRSA infections.  相似文献   

18.
Thirty seven bacterial cultures isolated from soil samples obtained from different locations were tested for their antagonistic activity against some fungal pathogens, viz., Sclerotium rolfsii, Fusarium oxysporum and Rhizoctonia solani, causal agents of collar rot of sunflower, wilts and root rots, respectively. Among them, 5 bacterial strains, viz., A1 6 (Bacillus sphaericus), K1 24 (Pseudomonas fluorescens), M1 42 (Bacillus circulans), M1 66 (Bacillus brevis) and T1 22 (Bacillus brevis) showed positive antagonistic activity. M1 66 was the most effective in inhibiting mycelial growth of S. rolfsii in vitro followed by M1 42, T1 22, K1 24 and A1 6. Only one bacterial strain i.e. M1 42 exhibited antagonistic activity against F. oxysporum, and none of the bacterial strains gave positive activity against R. solani. Furthermore, antimicrobial activities of all the 5 strains were checked against different test organisms. These strains showed their extensive inhibition effect particularly against gram-positive test bacteria (Staphylococcus aureus and Bacillus subtilis) and the test fungal strain (Candida albicans). On the other hand, B. brevis M1 66 and B. brevis T1 22 strains had an inhibitory effect against gram positive and gram-negative test bacteria (Escherichia coli and Proteus vulgaris) as well as the test fungal strain.  相似文献   

19.
The velvet regulators VosA and VelB are primarily involved in spore maturation and dormancy. Previous studies found that the VosA-VelB hetero-complex coordinates certain target genes that are related to fungal differentiation and conidial maturation in Aspergillus nidulans. Here, we characterized the VosA/VelB-inhibited developmental gene vidD in A. nidulans. Phenotypic analyses demonstrated that the vidD deleted mutant exhibited defect fungal growth, a reduced number of conidia, and delayed formation of sexual fruiting bodies. The deletion of vidD decreased the amount of conidial trehalose, increased the sensitivity against heat stress, and reduced the conidial viability. Moreover, the absence of vidD resulted in increased production of sterigmatocystin. Together, these results show that VidD is required for proper fungal growth, development, and sterigmatocystin production in A. nidulans.  相似文献   

20.
The isolation and characterization of the chemical constituents of different parts of Mangifera indica, sound and infected with two pathogenic fungi, viz. Aspergillus niger and Fusarium moniliformae, are described. Natural occurrence of two polyketideshikimate-derived depsides is reported for the first time. Additionally, a number of xanthones, flavonoids, triterpenes and amino acids, not encountered before in this species, are reported. The co-occurrence of mangiferin, 1,3,6,7-tetra- and 1,3,5,6,7-pentaoxygenated xanthones and the quantitative variation of the latter two compounds with the growing of the plant and during the fungal infection are biochemically significant. The protector role of the flavonoids and other C15 metabolites to M. indica from the ingress of the fungal hyphae is indicated. The two pathogenic fungi secreted a number of mycotoxins in different parts of the host species during its vegetation and flowering periods. During the elaboration of these toxic metabolites, the host-pathogen interaction played an important role. Evidence is presented for A. niger as a mycotoxin producing fungus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号