首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Many Gram-positive pathogens aggregate and activate platelets in vitro and this has been proposed to contribute to virulence. Platelets can also form complexes with neutrophils but little is however known about platelet and platelet-neutrophil responses in bacterial infection.

Methodology/Principal Findings

We added isolates of Gram-positive bacteria from 38 patients with a bacteremic infection to blood drawn from the same patient. Aggregometry and flow cytometry were used to assess platelet aggregation and to quantify activation of platelets, neutrophils, and platelet-neutrophils complexes (PNCs) induced by the bacteria. Fifteen healthy persons served as controls. Most isolates of Staphylococcus aureus, beta hemolytic streptococci, and Enterococcus faecalis induced aggregation of platelets from their respective hosts, whereas pneumococci failed to do so. S. aureus isolates induced platelet aggregation more rapidly in patients than in controls, whereas platelet activation by S. aureus was lower in patients than in controls. PNCs were more abundant in baseline samples from patients than in healthy controls and most bacterial isolates induced additional PNC formation and neutrophil activation.

Conclusion/Significance

We have demonstrated for the first time that bacteria isolated from patients with Gram-positive bacteremia can induce platelet activation and aggregation, PNC formation, and neutrophil activation in the same infected host. This underlines the significance of these interactions during infection, which could be a target for future therapies in sepsis.  相似文献   

2.

Background

Enterococcus faecalis is a significant cause of infective endocarditis, an infection of the heart endothelium leading to vegetation formation (microbes, fibrin, platelets, and host cells attached to underlying endothelial tissue). Our previous research determined that enterococcal aggregation substance (AS) is an important virulence factor in causation of endocarditis, although endocarditis may occur in the absence of AS production. Production of AS by E. faecalis causes the organism to form aggregates through AS binding to enterococcal binding substance. In this study, we assessed the ability of IgGs and IgG Fabs against AS to provide protection against AS+ E. faecalis endocarditis.

Methodology/Principal Findings

When challenged with AS+ E. faecalis, 10 rabbits actively immunized against AS+ E. faecalis developed more significant vegetations than 9 animals immunized against AS E. faecalis, and 9/10 succumbed compared to 2/9 (p<0.005), suggesting enhanced aggregation by IgG contributes significantly to disease. IgG antibodies against AS also enhanced enterococcal aggregation as tested in vitro. In contrast, Fab fragments of IgG from rabbits immunized against purified AS, when passively administered to rabbits (6/group) immediately before challenge with AS+ E. faecalis, reduced total vegetation (endocarditis lesion) microbial counts (7.9×106 versus 2.0×105, p = 0.02) and size (40 mg versus 10, p = 0.05). In vitro, the Fabs prevented enterococcal aggregation.

Conclusions/Significance

The data confirm the role of AS in infective endocarditis formation and suggest that use of Fabs against AS will provide partial protection from AS+ E. faecalis illness.  相似文献   

3.
Blood platelets are the innate immune elements that have not been investigated in human filarial infections. Platelet activation status in the endemic normals (EN), microfilaria positive individuals (MF) and patients with chronic pathology (CP) was evaluated in whole blood, under unstimulated as well as antigen exposed (BmA, E. coli) conditions for PAC-1 expression by Flow cytometry. A diminished PAC-1 expression was observed in MF compared to CP and EN spontaneously as well as upon antigen exposure. Besides this, PAC-1 expression within the groups did not exhibit any significant difference under all the experimental conditions. However in CP patients, E. coli antigen exposure resulted in a significantly reduced PAC-1 expression compared to the spontaneous expression levels. NO release in platelet culture supernatants from EN was inversely proportional to platelet aggregation. Collagen stimulated platelets from EN, exposed to sera and immune complexes from CP and MF patients resulted in elevated Nitric Oxide (NO) release, compared to those exposed to autologous sera and fetal calf serum. In addition, under similar conditions, collagen stimulated platelets from EN, exposed to filarial antigen (BmA) exhibited increased NO compared to the E. coli antigen exposed ones and light microscopic observations of cultured platelets supported the above findings. Thus it appears from the results of the present study that filarial antigen may play a role in the loss of platelet aggregation, leading to platelet inactivation.  相似文献   

4.
The bacterium Helicobacter pylori causes peptic ulcers and gastric cancer in human beings by mechanisms yet not fully understood. H. pylori produces urease which neutralizes the acidic medium permitting its survival in the stomach. We have previously shown that ureases from jackbean, soybean or Bacillus pasteurii induce blood platelet aggregation independently of their enzyme activity by a pathway requiring platelet secretion, activation of calcium channels and lipoxygenase‐derived eicosanoids. We investigated whether H. pylori urease displays platelet‐activating properties and defined biochemical pathways involved in this phenomenon. For that the effects of purified recombinant H. pylori urease (HPU) added to rabbit platelets were assessed turbidimetrically. ATP secretion and production of lipoxygenase metabolites by activated platelets were measured. Fluorescein‐labelled HPU bound to platelets but not to erythrocytes. HPU induced aggregation of rabbit platelets (ED50 0.28 μM) accompanied by ATP secretion. No correlation was found between platelet activation and ureolytic activity of HPU. Platelet aggregation was blocked by esculetin (12‐lipoxygenase inhibitor) and enhanced ~3‐fold by indomethacin (cyclooxygenase inhibitor). A metabolite of 12‐lipoxygenase was produced by platelets exposed to HPU. Platelet responses to HPU did not involve platelet‐activating factor, but required activation of verapamil‐inhibitable calcium channels. Our data show that purified H. pylori urease activates blood platelets at submicromolar concentrations. This property seems to be common to ureases regardless of their source (plant or bacteria) or quaternary structure (single, di‐ or tri‐chain proteins). These properties of HPU could play an important role in pathogenesis of gastrointestinal and associated cardiovascular diseases caused by H. pylori.  相似文献   

5.
Recent work has indicated that platelets, which are anucleate blood cells, significantly contribute to inflammatory disorders. Importantly, platelets also likely contribute to various inflammatory secondary disorders that are increasingly associated with Human Immunodeficiency Virus Type-1 (HIV) infection including neurological impairments and cardiovascular complications. Indeed, HIV infection is often associated with increased levels of platelet activators. Additionally, cocaine, a drug commonly abused by HIV-infected individuals, leads to increased platelet activation in humans. Considering that orchestrated signaling mechanisms are essential for platelet activation, and that nuclear factor-kappa B (NF-κB) inhibitors can alter platelet function, the role of NF-κB signaling in platelet activation during HIV infection warrants further investigation. Here we tested the hypothesis that inhibitory kappa B kinase complex (IKK) activation would be central for platelet activation induced by HIV and cocaine. Whole blood from HIV-positive and HIV-negative individuals, with or without cocaine abuse was used to assess platelet activation via flow cytometry whereas IKK activation was analyzed by performing immunoblotting and in vitro kinase assays. We demonstrate that increased platelet activation in HIV patients, as measured by CD62P expression, is not altered with reported cocaine use. Furthermore, cocaine and HIV do not activate platelets in whole blood when treated ex vivo. Finally, HIV-induced platelet activation does not involve the NF-κB signaling intermediate, IKKβ. Platelet activation in HIV patients is not altered with cocaine abuse. These results support the notion that non-IKK targeting approaches will be better suited for the treatment of HIV-associated inflammatory disorders.  相似文献   

6.

Background

The endocannabinoid system has previously been implicated in the regulation of neurons and inflammatory cells. Additionally, it has been reported that endocannabinoid receptors are present on circulating platelets, but there has been conflicting evidence on their contribution to platelet function.

Objectives

Our aim was to examine the role of endocannabinoids in platelet function in vitro and in vivo.

Methods and Results

We studied the effects of the well-characterized endogenous endocannabinoid anandamide on platelet aggregation in suspension, α-granule release, calcium mobilization, Syk phosphorylation, as well as platelet spreading and aggregate formation under flow. Anandamide inhibits platelet aggregation and α-granule release by collagen, collagen-derived peptide CRP-XL, ADP, arachidonic acid and thromboxane A2 analogue U46619. However, activation via thrombin receptor PAR-1 stays largely unaffected. Calcium mobilization is significantly impaired when platelets are stimulated with collagen or CRP-XL, but remains normal in the presence of the other agonists. In line with this finding, we found that anandamide prevents collagen-induced Syk phosphorylation. Furthermore, anandamide-treated platelets exhibit reduced spreading on immobilized fibrinogen, have a decreased capacity for binding fibrinogen in solution and show perturbed platelet aggregate formation under flow over collagen. Finally, we investigated the influence of Cannabis sativa consumption by human volunteers on platelet activation. Similar to our in vitro findings with anandamide, ex vivo collagen-induced platelet aggregation and aggregate formation on immobilized collagen under flow were impaired in whole blood of donors that had consumed Cannabis sativa.

Conclusions

Endocannabinoid receptor agonists reduce platelet activation and aggregate formation both in vitro and ex vivo after Cannabis sativa consumption. Further elucidation of this novel regulatory mechanism for platelet function may prove beneficial in the search for new antithrombotic therapies.  相似文献   

7.
Sexual dimorphism is observed in the progression to congestive heart failure and, ultimately, in longevity in spontaneously hypertensive heart failure (SHHF) rats. As platelet activation may impact development of cardiovascular diseases, we studied the effects of obesity and sex on platelet polyunsaturated fatty acid (PUFA) profile and its relationship to platelet aggregation in 6-month-old SHHF rats. After a 24-hr fast, blood was obtained for measurement of platelet phospholipid omega-6 (n-6) and omega-3 (n-3) PUFA. Collagen-induced platelet aggregation was measured by whole-blood impedance aggregometry. Obese male (OM) SHHF had significantly more platelet arachidonic acid (AA) and total n-6 PUFA than lean males (LMs), lean females (LFs), or obese females (OFs). Platelet aggregation was enhanced in males compared to females, with OMs by 45% compared to OFs and with LMs by 28% compared to LFs. Though no difference was found between OFs and LFs, platelet aggregation was increased in OMs by 20% compared to LMs. Though not significantly different, lag time to initiate platelet aggregation tended to be shortest in OMs and then, in increasing duration, LMs, LFs, and OFs, suggesting that platelets from male rats were quicker to aggregate than those from females. Platelet aggregation was correlated with platelet AA and total n-6 PUFA content. There was no relationship between n-3 PUFA and platelet aggregation. In SHHF rats, elevated AA and n-6 PUFA levels in platelets are associated with enhanced platelet aggregation. This relationship is potentiated by obesity and male sex.  相似文献   

8.
Platelet aggregation by oral streptococci   总被引:2,自引:0,他引:2  
One proposed mechanism in the pathogenesis of infective endocarditis is the direct aggregation of platelets by the bacteria causing the disease. Some, but not all, strains of Streptococcus sanguis have been reported to aggregate platelets but the taxonomy of this and related taxa has changed recently. The ability to aggregate platelets by 24 genetically grouped laboratory stock strains was studied along with 8 recent isolates from cases of endocarditis. Strains belonging to S. sanguis could aggregate platelets, but not S. gordonii, "S. parasanguis", S. mitis, S. oralis or related taxa. Also, preliminary data indicate that certain biotypes of S. sanguis lack the ability to aggregate platelets. Of the recent clinical isolates, only 4 aggregated platelets and each of these showed phenotypes typical of S. sanguis. These data suggest that the ability to aggregate platelets is not essential for an organism to be able to cause endocarditis, although it may be a significant virulence factor.  相似文献   

9.
The speciation of 262 strains of group D streptococci isolated from human sources is described. One hundred forty-two isolates from blood cultures were included; 96 of these were submitted as isolates from clinical cases of subacute bacterial endocarditis. The results show that 98 Streptococcus faecalis, 29 S. faecalis var. zymogenes, 44 S. faecalis var. liquefaciens, 27 S. faecium, 13 S. durans, 44 S. bovis, and 7 unspeciated S. bovis-like group D isolates were identified. No S. faecium var. casseliflavus, S. equinus, or S. avium (group Q streptococci) were identified among the human isolates. The speciation procedures and techniques are detailed. The procedures and limitations of the tests used are discussed. Ninety-eight percent of the 262 strains were speciated by a spectrum of tests that allowed us to recognize atypical as well as typical strains within species.  相似文献   

10.
We investigated the mechanism of activation and functional role of a hitherto uncharacterized signaling molecule, RhoG, in platelets. We demonstrate for the first time the expression and activation of RhoG in platelets. Platelet aggregation, integrin αIIbβ3 activation, and α-granule and dense granule secretion in response to the glycoprotein VI (GPVI) agonists collagen-related peptide (CRP) and convulxin were significantly inhibited in RhoG-deficient platelets. In contrast, 2-MeSADP- and AYPGKF-induced platelet aggregation and secretion were minimally affected in RhoG-deficient platelets, indicating that the function of RhoG in platelets is GPVI-specific. CRP-induced phosphorylation of Syk, Akt, and ERK, but not SFK (Src family kinase), was significantly reduced in RhoG-deficient platelets. CRP-induced RhoG activation was consistently abolished by a pan-SFK inhibitor but not by Syk or PI3K inhibitors. Interestingly, unlike CRP, platelet aggregation and Syk phosphorylation induced by fucoidan, a CLEC-2 agonist, were unaffected in RhoG-deficient platelets. Finally, RhoG−/− mice had a significant delay in time to thrombotic occlusion in cremaster arterioles compared with wild-type littermates, indicating the important in vivo functional role of RhoG in platelets. Our data demonstrate that RhoG is expressed and activated in platelets, plays an important role in GPVI-Fc receptor γ-chain complex-mediated platelet activation, and is critical for thrombus formation in vivo.  相似文献   

11.
The inhibitory effect of adenosine on aggregation of human platelets activated by platelet activating factor (PAF), ADP and serotonin (5-HT) were examined using native platelets from blood of volunteers. Platelet aggregation was determined by Born's method. Effective adenosine concentrations (IC50) which had inhibited platelet aggregation were found to be 0.63 +/- 0.11, 1.47 +/- 0.31 and 0.64 +/- 0.18 microM, respectively. It was shown that 10 microM adenosine inhibited PAF-induced platelet aggregation completely. The same adenosine concentration blocked ADP- and 5-HT-induced aggregation only partially. Adenosine is physiological inhibitor of human platelet aggregation in administration of PAF, ADP and 5-HT. Specific characteristics of adenosine modulating effect on these ligands was elicited.  相似文献   

12.
We have studied the effect of ethoxzolamide, a specific carbonic anhydrase inhibitor, on the velocity of thrombin-stimulated platelet aggregation. After preincubation of platelet rich plasma with 10?6 M ethoxzolamide the velocity of platelet aggregation was reduced by about 40%. Between 10?11 M and 10?10M ethoxzolamide was necessary to achieve a half-maximal diminution of the aggregation velocity. An identical maximal reduction of the velocity of aggregation as with ethoxzolamide could be achieved by a nearly complete removal of CO2 from the platelet rich plasma. These results suggest that the intracellular CO2 hydration-dehydration reaction is involved in the activation of human platelets by thrombin. It is possible that the cytosolic carbonic anhydrase of platelets provides a rapid source of the protons that are transferred across the plasma membrane during the activation process.  相似文献   

13.
Mody NA  King MR 《Biophysical journal》2008,95(5):2539-2555
Abnormally high shear stresses encountered in vivo induce spontaneous activation of blood platelets and formation of aggregates, even in the absence of vascular injury. A three-dimensional multiscale computational model—platelet adhesive dynamics—is developed and applied in Part I and Part II articles to elucidate key biophysical aspects of GPIbα-von-Willebrand-factor-mediated interplatelet binding that characterizes the onset of shear-induced platelet aggregation. In this article, the hydrodynamic effects of the oblate spheroidal shape of platelets and proximity of a plane wall on the nature of cell-cell collisions are systematically investigated. Physical quantities characterizing the adhesion probabilities between colliding platelet surfaces for the entire range of near-wall encounters between two platelets are obtained for application in platelet adhesive dynamics simulations of platelet aggregation explored in a companion article. The technique for matching simulation predictions of interplatelet binding efficiency to experimentally determined efficiencies is also described. Platelet collision behavior is found to be strikingly different from that of spheres, both close to and far from a bounding wall. Our results convey the significant effects that particle shape and presence of a bounding wall have on the particle trajectories and collision mechanisms, collision characteristics such as collision time and contact area, and collision frequency.  相似文献   

14.
Platelet aggregation inducer and inhibitor were isolated from Echis carinatus snake venom. The venom inducer caused aggregation of washed rabbit platelets which could be inhibited completely by heparin or hirudin. The venom inducer also inhibit both the reversibility of platelet aggregation induced by ADP and the disaggregating effect of prostaglandin E1 on the aggregation induced by collagen in the presence of heparin. The venom inhibitor decreased the platelet aggregation induced by collagen, thrombin, ionophore A23187, arachidonate, ADP and platelet-activating factor (PAF) with an IC50 of around 10 μg/ml. It did not inhibit the agglutination of formaldehyde-treated platelets induced by polylysine. In the presence of indomethacin or in ADP-refractory platelets or thrombin-degranulated platelets, the venom inhibitor further inhibited the collagen-induced aggregation. Fibrinogen antagonized competitively the inhibitory action of the venom inhibitor in collagen-induced aggregation. In chymotrypsin-treated platelets, the venom inhibitor abolished the aggregation induced by fibrinogen. It was concluded that the venom inducer caused platelet aggregation indirectly by the conversion of prothrombin to thrombin, while the venom inhibitor inhibited platelet aggregation by interfering with the interaction between fibrinogen and platelets.  相似文献   

15.
The enterococcal surface protein, Esp, is a high-molecular-weight surface protein of unknown function whose frequency is significantly increased among infection-derived Enterococcus faecalis isolates. In this work, a global structural similarity was found between Bap, a biofilm-associated protein of Staphylococcus aureus, and Esp. Analysis of the relationship between the presence of the Esp-encoding gene (esp) and the biofilm formation capacity in E. faecalis demonstrated that the presence of the esp gene is highly associated (P < 0.0001) with the capacity of E. faecalis to form a biofilm on a polystyrene surface, since 93.5% of the E. faecalis esp-positive isolates were capable of forming a biofilm. Moreover, none of the E. faecalis esp-deficient isolates were biofilm producers. Depending on the E. faecalis isolate, insertional mutagenesis of esp caused either a complete loss of the biofilm formation phenotype or no apparent phenotypic defect. Complementation studies revealed that Esp expression in an E. faecalis esp-deficient strain promoted primary attachment and biofilm formation on polystyrene and polyvinyl chloride plastic from urine collection bags. Together, these results demonstrate that (i) biofilm formation capacity is widespread among clinical E. faecalis isolates, (ii) the biofilm formation capacity is restricted to the E. faecalis strains harboring esp, and (iii) Esp promotes primary attachment and biofilm formation of E. faecalis on abiotic surfaces.  相似文献   

16.
Staphylococcus aureus is a leading cause of infective endocarditis (IE). Platelet activation promoted by S. aureus resulting in aggregation and thrombus formation is an important step in the pathogenesis of IE. Here, we report that the fibrinogen/fibronectin-binding proteins FnBPA and FnBPB are major platelet-activating factors on the surface of S. aureus from the exponential phase of growth. Truncated derivatives of FnBPA, presenting either the fibrinogen-binding A domain or the fibronectin-binding BCD region, each promoted platelet activation when expressed on the surface of S. aureus or Lactococcus lactis, indicating two distinct mechanisms of activation. FnBPA-promoted platelet activation is mediated by fibrinogen and fibronectin bridges between the A domain and the BCD domains, respectively, to the low affinity form of the integrin GPIIb/IIIa on resting platelets. Antibodies recognizing the FnBPA A domain or the complex between the FnBPA BCD domains and fibronectin were essential for activation promoted by bacteria expressing the A domain or the BCD domain respectively. Activation was inhibited by a monoclonal antibody (IV-3) specific for the FcgammaRIIa IgG receptor on platelets. We propose that the activation of quiescent platelets by bacteria expressing FnBPs involves the formation of a bridge between the bacterial cell and the platelet surface by (i) fibronectin and fibrinogen interacting with the low affinity form of GPIIb/IIIa and (ii) by antibodies specific to FnBPs that engage the platelet Fc receptor FcgammaRIIa. Platelet activation by S. aureus clinical IE isolates from both the exponential and stationary phases of growth was completely inhibited by monoclonal antibody IV-3 suggesting that the IgG-FcgammaRIIa interaction is of fundamental importance for platelet activation mediated by this organism. This suggests new avenues for development of therapeutics against vascular infections.  相似文献   

17.
Vancomycin-resistant enterococci (VRE) have been reported to be present in humans, chickens, and pigs in Malaysia. In the present study, representative samples of VRE isolated from these populations were examined for similarities and differences by using the multilocus sequence typing (MLST) method. Housekeeping genes of Enterococcus faecium (n = 14) and Enterococcus faecalis (n = 11) isolates were sequenced and analyzed using the MLST databases eBURST and goeBURST. We found five sequence types (STs) of E. faecium and six STs of E. faecalis existing in Malaysia. Enterococcus faecium isolates belonging to ST203, ST17, ST55, ST79, and ST29 were identified, and E. faecium ST203 was the most common among humans. The MLST profiles of E. faecium from humans in this study were similar to the globally reported nosocomial-related strain lineage belonging to clonal complex 17 (CC17). Isolates from chickens and pigs have few similarities to those from humans, except for one isolate from a chicken, which was identified as ST203. E. faecalis isolates were more diverse and were identified as ST4, ST6, ST87, ST108, ST274, and ST244, which were grouped as specific to the three hosts. E. faecalis, belonging to the high-risk CC2 and CC87, were detected among isolates from humans. In conclusion, even though one isolate from a chicken was found clonal to that of humans, the MLST analysis of E. faecium and E. faecalis supports the findings of others who suggest VRE to be predominantly host specific and that clinically important strains are found mainly among humans. The infrequent detection of a human VRE clone in a chicken may in fact suggest a reverse transmission of VRE from humans to animals.  相似文献   

18.
19.
The response to vascular injury involves attachment and aggregation of platelets, coupled with initiation of the coagulation cascade. These inter-related processes ensure that the vessel injury is rapidly blocked with an aggregated clump of platelets that is then stabilized by a crosslinked fibrin matrix. Initial adherence relies on the ability of the platelet adhesion receptors to bind subendothelial matrix molecules. Platelet activation then results in the expression of high affinity integrin receptors on the cell surface that bind soluble ligands, allowing platelets to aggregate and form a hemostatic plug.  相似文献   

20.

Background

Platelet aggregation during aspirin treatment displays considerable inter-individual variability. A genetic etiology likely exists, but it remains unclear to what extent genetic polymorphisms determine platelet aggregation in aspirin-treated individuals.

Aim

To identify platelet-related single nucleotide polymorphisms (SNPs) influencing platelet aggregation during aspirin treatment. Furthermore, we explored to what extent changes in cyclooxygenase-1 activity and platelet activation may explain such influence.

Methods

We included 985 Danish patients with stable coronary artery disease treated with aspirin 75 mg/day mono antiplatelet therapy. Patients were genotyped for 16 common SNPs in platelet-related genes using standard PCR-based methods (TaqMan). Platelet aggregation was evaluated by whole blood platelet aggregometry employing Multiplate Analyzer (agonists: arachidonic acid and collagen) and VerifyNow Aspirin. Serum thromboxane B2 was measured to confirm aspirin adherence and was used as a marker of cyclooxygenase-1 activity. Soluble P-selectin was used as marker of platelet activation. Platelet aggregation, cyclooxygenase-1 activity, and platelet activation were compared across genotypes in adjusted analyses.

Results

The A-allele of the rs12041331 SNP in the platelet endothelial aggregation receptor-1 (PEAR1) gene was associated with reduced platelet aggregation and increased platelet activation, but not with cyclooxygenase-1 activity. Platelet aggregation was unaffected by the other SNPs analyzed.

Conclusion

A common genetic variant in PEAR1 (rs12041331) reproducibly influenced platelet aggregation in aspirin-treated patients with coronary artery disease. The exact biological mechanism remains elusive, but the effect of this polymorphism may be related to changes in platelet activation. Furthermore, 14 SNPs previously suggested to influence aspirin efficacy were not associated with on-aspirin platelet aggregation.

Clinical Trial Registration

ClinicalTrials.gov NCT01383304  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号