首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Oxidative stress linked to DNA damage is involved in the pathogenesis of Helicobacter pylori-associated gastric diseases. The DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair, and apoptosis through the activation of ataxia-telangiectasia-mutated (ATM) and ATM and Rad3-related (ATR) and their target proteins. However, neither H. pylori-induced DDR nor the effects of antioxidants on the DNA damage have been established. This study aimed to investigate the detailed process of H. pylori-induced DNA damage and to examine whether lycopene, a natural antioxidant, inhibits DNA damage and cellular response of gastric epithelial AGS cells infected with H. pylori. AGS cells were cultured with H. pylori in Korean isolates and treated with or without lycopene. Cell viability, DNA damage indices, levels of 8-OH-dG, and reactive oxygen species (ROS) as well as cell-cycle distributions were determined. The activation of ATM, ATR, Chk1, and Chk2; histone H2AX focus formation; activation and induction of p53; and levels of Bax and Bcl-2 and poly(ADP-ribose) polymerase-1 (PARP-1) were assessed. The results showed that H. pylori induced apoptosis in AGS cells with increased Bax and decreased Bcl-2 expression as well as PARP-1 cleavage. Culture with H. pylori led to increases in intracellular ROS, 8-OH-dG, double-strand DNA breaks (DSBs), and DNA fragmentation. H. pylori induced activation of the ATM/Chk2 and ATR/Chk1 pathways, phosphorylation of H2AX and p53, and a delay in the progression of the cells entering the S phase. Lycopene inhibited H. pylori-induced increases in ROS, apoptosis, alterations in cell-cycle distribution, DSBs, and ATM- and ATR-mediated DDR in AGS cells. In conclusion, lycopene may be beneficial for treatment of H. pylori-induced gastric diseases associated with oxidative DNA damage.  相似文献   

5.
Helicobacter pylori represents a highly successful human microbial pathogen that infects the stomach of more than half of the world's population. H. pylori induces gastric inflammation, and the diseases that can follow such infection include chronic gastritis, peptic ulcers and, more rarely, gastric cancer. The reasons why a minority of patients with H. pylori develops gastric cancer could be related to differences in host susceptibility, environmental factors and the genetic diversity of the organism. This review examines the features of H. pylori-induced epithelial cell signalling in gastric diseases. Clinical studies and animal models, and also evidence for H. pylori strain-related differences in gastric epithelial cell proliferation in vivo are discussed. In addition, the mechanisms by which H. pylori triggers hyperproliferative processes and takes direct command of epithelial cell signalling, including activation of tyrosine kinase receptors, cell-cell interactions and cell motility are reviewed.  相似文献   

6.
In this study we investigated whether an acidic extracellular pH may inhibit H. pylori-induced internalization of bacterial virulence factors by gastric epithelium, thus preventing ingestion of potentially dangerous luminal contents and resulting cellular damage. The interaction of H. pylori VacA toxin and ammonia (produced by H. pylori urease) with partly polarized gastric MKN 28 cells in culture was investigated at neutral and moderately acidic pH (6.2, compatible with cell viability) by means of neutral red dye uptake and ultrastructural immunocytochemistry. We found that acidic extracellular pH virtually abolished both VacA-dependent and ammonia-dependent cell vacuolation, as shown by the neutral red test, and caused a 50% decrease in VacA internalization into endosomal vesicles and vacuoles, as assessed by quantitation of immunogold particles. In addition, acidic pH blocked endosomal internalization of H. pylori outer membrane vesicles, a convenient indicator of endocytosis. Our data raise the possibility that suppression of gastric acid may increase H. pylori-induced gastric damage by enhancing epithelial internalization of H. pylori virulence factors through activation of endocytosis. Increased transmembrane diffusion of ammonia could also contribute to this process.  相似文献   

7.
CD74, or the class II MHC-associated invariant chain, is best known for the regulation of Ag presentation. However, recent studies have suggested other important roles for this protein in inflammation and cancer studies. We have shown that CD74 is expressed on the surface of gastric cells, and Helicobacter pylori can use this receptor as a point of attachment to gastric epithelial cells, which lead to IL-8 production. This study investigates the ability of H. pylori to up-regulate one of its receptors in vivo and with a variety of gastric epithelial cell lines during infection with H. pylori. CD74 expression was increased dramatically on gastric biopsies from H. pylori-positive patients and gastric cell lines exposed to the bacteria. Gastric cells exposed to H. pylori-conditioned medium revealed that the host cell response was responsible for the up-regulation of CD74. IL-8 was found to up-regulate CD74 cell surface expression because blocking IL-8Rs or neutralizing IL-8 with Abs counteracted the increased expression of CD74 observed during infection with H. pylori. These studies demonstrate how H. pylori up-regulates one of its own receptors via an autocrine mechanism involving one of the products induced from host cells.  相似文献   

8.
The aim of this study was to determine whether the Helicobacter pylori-derived sphigomyelinase (SMase) affects the sphingomyelin pathway and growth in AGS epithelial cells. We showed that the exogenous SMase increased the intracellular level of ceramide in AGS cells and led to rapid stimulation of extracellular signal-regulated kinase (ERK) and c-Jun kinase (JNK) activities. Incubation of AGS cells with H. pylori-derived SMase also resulted in suppression of cell growth and a concomitant induction of apoptosis. Data showed that PD98059 (up to 50 microM), an ERK inhibitor, did not affect the cell viability, whereas the cytotoxicity of exogenous SMase was completely blocked by SP600125, a JNK inhibitor at a concentration of 210 nM. We conclude that the activation of the mitogen-activated protein (MAP) kinases in AGS cells by exogenous H. pylori SMase is a major pathway to mediate the cytotoxicity.  相似文献   

9.
10.
Infection with Helicobacter pylori induces various gastric diseases, including ulceration, gastritis and neoplasia. As H. pylori-induced cellular mechanisms leading to these disease states are widely unclear, we analysed the phosphoproteome of H. pylori-infected gastric epithelial cells. Phosphoproteins from infected cells were enriched using affinity columns and analysed by two-dimensional gel electrophoresis and mass spectrometry. Eleven novel phosphoproteins that showed differentially regulated phosphorylation levels during H. pylori infection were identified. Interestingly, the identified proteins were actin-binding, transport and folding, RNA/DNA-binding or cancer-associated proteins. We analysed functions of one identified H. pylori-regulated candidate, the vasodilator-stimulated phosphoprotein (VASP). H. pylori induced VASP phosphorylation at residues Ser157, Ser239 and Thr278, which was enhanced by the bacterial oncogene cytotoxin-associated gene A. Overexpression of a phosphorylation-resistant VASP mutant efficiently blocked host cell elongation. We identified cGMP-dependent protein kinase G-mediated Ser239 and Thr278 phosphorylation of VASP as a crucial event in H. pylori-dependent host cell elongation. These results suggest that phosphorylated VASP could be a novel target candidate for therapeutic intervention in H. pylori-related gastric diseases.  相似文献   

11.
Dynamic rearrangement of the actin cytoskeleton is a significant hallmark of Helicobacter pylori (H. pylori) infected gastric epithelial cells leading to cell migration and invasive growth. Considering the cellular mechanisms, the type IV secretion system (T4SS) and the effector protein cytotoxin-associated gene A (CagA) of H. pylori are well-studied initiators of distinct signal transduction pathways in host cells targeting kinases, adaptor proteins, GTPases, actin binding and other proteins involved in the regulation of the actin lattice. In this review, we summarize recent findings of how H. pylori functionally interacts with the complex signaling network that controls the actin cytoskeleton of motile and invasive gastric epithelial cells.  相似文献   

12.
Efforts to identify potent small molecule inhibitors of Helicobacter pylori led to the evaluation of 23 3′,4′,5′-trimethoxychalcone analogues. Some of the compounds displayed potent antibacterial activity against H. pylori. Three most active and selective compounds 1, 7, and 13 also showed the bactericide activity against the reference as well as multidrug-resistant strains of H. pylori. Additionally, the aforementioned three compounds potentially inhibited the H. pylori adhesion and invasion to human gastric epithelial (AGS) cells. Furthermore, these selective compounds inhibited the H. pylori-induced gastric inflammation by reduced inflammatory mediator’s nuclear factor kappa B activation, and the secretion of interleukin-8.  相似文献   

13.
Background. Cyclooxygenase (COX)‐2 induced by Helicobacter pylori is thought to enhance gastric carcinogenesis by affecting the maintenance of epithelial homeostasis. Materials and Methods. Gastric biopsies from 160 subjects, 97 with nonulcer dyspepsia (47 H. pylori negative, 50 H. pylori positive) and 63 with gastric cancer were examined immunohistochemically for COX‐2 expression, cell proliferation and apoptotic indices. Results. COX‐2 expression in corpus was significantly higher in H. pylori positive than in negative non‐ulcer dyspepsia (NUD) (p < .05). Regardless of site, gastric cancer subjects had higher COX‐2 expression in both antrum and corpus compared with H. pylori negative and positive NUD (p < .005). Proliferation was higher in cancer and H. pylori positive than in negative NUD (p < .0001). Moreover, cancer had enhanced proliferation than H. pylori positive NUD in corpus greater (p = .0454) and antrum lesser (p = .0215) curvatures. Apoptosis was higher in H. pylori positive than in negative NUD (p < .05). However, both had a higher index than the cancer subjects (p < .0001). Apoptosis : proliferation ratio was higher in corpus of H. pylori negative than in positive NUD in greater (p = .0122) and lesser (p = .0009) curvatures. However, both had a higher A:P ratio than cancer cases (p = .0001). A negative correlation between COX‐2 expression and A:P ratio was found in corpus greater (r = –.176, p= .0437) and lesser (r = –.188, p= .0312) curvatures. Conclusion. The expression of COX‐2 is associated with disruption in gastric epithelial kinetics and hence may play a role in gastric carcinogenesis.  相似文献   

14.
Mucus hypersecretion is a major manifestation in patients with chronic inflammatory airway diseases, and MUC5AC protein is a major component of airway mucus. Earlier studies have demonstrated that neutrophil elastase (NE), a serine protease, mainly produced by neutrophils, stimulates the production of MUC5AC from airway epithelial cells. The microRNA miR-146a has been linked to inflammatory diseases. However, the role of miR-146a in the NE-induced MUC5AC expression remains unclear. Here, we show that NE exerts a dose- and time-dependent induction of both MUC5AC and miR-146a in human bronchial epithelial cells (16HBE). Ectopic expression of miR-146a in 16HBE cells inhibited the stimulation of MUC5AC by NE, while, conversely, depletion of endogenous miR-146a enhanced the MUC5AC production. Knockdown of intrinsic miR-146a activated both c-Jun N-terminal kinase (JNK) and nuclear factor-kappaB (NF-κB) signaling pathways. Moreover, targeting JNK or NF-κB by specific chemical inhibitors blocked the upregulation of MUC5AC by miR-146a silencing. Taken together, our data highlight a negative feedback role for miR-146a in the control of MUC5AC production from airway epithelial cells stimulated by NE, which may be associated with the inactivation of JNK and NF-κB signaling.  相似文献   

15.
16.
Helicobacter pylori-induced inflammation significantly increases the risk of gastric cancer. To investigate the role of H. pylori infection in gastric epithelial cell carcinogenesis, flow cytometry was used to analyze the apoptosis of gastric epithelial cells infected by H. pylori. Next, LTQ MS mass spectrometry (MS) was applied to identify protein changes in gastric epithelial cells infected with H. pylori, and then bioinformatics was adopted to analyze the cellular localization and biological function of differential proteins. LTQ MS/MS successfully identified identified 22 differential proteins successfully, including 20 host-cell proteins and two H. pylori bacterial proteins. Also, human proteins were located in all areas of cells and involved in various cell biological functions. The oncogene proteins p53, p16, and C-erbB-2 proteins in H. pylori-infected RGM-1 cells were remarkably increased from the analysis by Western blot analysis. H. pylori infection of gastric epithelial cells leads to changes in various protein components in the cell, and enhances the expression of oncogene proteins, thereby increasing the possibility of possibility of carcinogenesis of H. pylori infection.  相似文献   

17.
18.
In the present study, we examined the role of Staphylococcus aureus protein A (SpA) in inducing inflammatory response in human corneal epithelial cells (HCECs). Exposure of HCECs to SpA induces rapid NF-kappaB activation and secretion of proinflammatory cytokine/chemokines (TNF-alpha and IL-8) in both concentration and time-dependent manner. Challenge of HCECs with live SpA(-/-) mutant S. aureus strains resulted in significantly reduced production of the cytokines when compared to the wild-type S. aureus strain. SpA also elicited the activation of MAP Kinases P38, ERK, but not JNK, in HCECs. SpA-induced production of proinflammatory cytokine were completely blocked by the NF-kappaB and p38 inhibitors and partially inhibited by the Jnk inhibitor. Pretreatment with anti-TLR2 neutralizing antibody had no effect on SpA-induced inflammatory response in HCECs, suggesting that this response is independent of TLR2 signaling. Moreover, unlike TLR2 ligands, SpA failed to induce the expression of antimicrobial peptides (hBD2 and LL-37) in HCECs. These studies indicate that SpA is a S. aureus virulence factor that stimulates HCEC inflammatory response through a pathway distinct from TLR2 in HCECs.  相似文献   

19.
We investigated the effect of H. pylori infection on cell proliferation of gastric mucosa using immunostaining for H. pylori or Ki67. H. pylori cells attached to surface mucous cells covering luminal surface and the upper part of gastric foveolae, and up-regulated the proliferative activity of gastric epithelial cells without adhering to the proliferating epithelial cells.  相似文献   

20.
Molecular analysis of the gastric microflora in mice revealed that Helicobacter pylori infection causes an increase in microbial diversity. The stomachs of H. pylori-infected animals were colonized by bacteria which are naturally restricted to the lower intestinal tract. Clostridia, Bacteroides/Prevotella spp., Eubacterium spp., Ruminococcus spp., streptococci and Escherichia coli were detected exclusively in the stomachs of infected animals, whereas lactobacilli dominated the gastric flora in noninfected mice. The H. pylori-induced shifts in the gastric microbiota were independent from histological pathology and from changes in the gastric pH but were prevented by immunization of mice with live Salmonella expressing H. pylori urease. Immunized mice displayed reduced H. pylori levels in the gastric epithelium and developed a normal gastric microflora, indicating that vaccination may be protective against H. pylori-induced changes in the gastric flora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号