首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During viral infection, constitutive proteasomes are largely replaced by immunoproteasomes, which display distinct cleavage specificities, resulting in different populations of potential CD8(+) T cell epitope peptides. Immunoproteasomes are believed to be important for the generation of many viral CD8(+) T cell epitopes and have been implicated in shaping the immunodominance hierarchies of CD8(+) T cell responses to influenza virus infection. However, it remains unclear whether these conclusions are generally applicable. In this study we investigated the CD8(+) T cell responses to lymphocytic choriomeningitis virus infection and DNA immunization in wild-type mice and in mice lacking the immunoproteasome subunits LMP2 or LMP7. Although the total number of virus-specific cells was lower in LMP2 knockout mice, consistent with their having lower numbers of naive cells before infection, the kinetics of virus clearance were similar in all three mouse strains, and LMP-deficient mice mounted strong primary and secondary lymphocytic choriomeningitis virus-specific CD8(+) T cell responses. Furthermore, the immunodominance hierarchy of the four investigated epitopes (nuclear protein 396 (NP(396)) > gp33 > gp276 > NP(205)) was well maintained. We observed a slight reduction in the NP(205)-specific response in LMP2-deficient mice, but this had no demonstrable biological consequence. DNA vaccination of LMP2- and LMP7-deficient mice induced CD8(+) T cell responses that were slightly lower than, although not significantly different from, those induced in wild-type mice. Taken together, our results challenge the notion that immunoproteasomes are generally needed for effective antiviral CD8(+) T cell responses and for the shaping of immunodominance hierarchies. We conclude that the immunoproteasome may affect T cell responses to only a limited number of viral epitopes, and we propose that its main biological function may lie elsewhere.  相似文献   

2.
Many of the factors that contribute to CD8+ T cell immunodominance hierarchies during viral infection are known. However, the functional differences that exist between dominant and subdominant epitope-specific CD8+ T cells remain poorly understood. In this study, we characterized the phenotypic and functional differences between dominant and subdominant simian immunodeficiency virus (SIV) epitope-specific CD8+ T cells restricted by the major histocompatibility complex (MHC) class I allele Mamu-A*01 during acute and chronic SIV infection. Whole genome expression analyses during acute infection revealed that dominant SIV epitope-specific CD8+ T cells had a gene expression profile consistent with greater maturity and higher cytotoxic potential than subdominant epitope-specific CD8+ T cells. Flow-cytometric measurements of protein expression and anti-viral functionality during chronic infection confirmed these phenotypic and functional differences. Expression analyses of exhaustion-associated genes indicated that LAG-3 and CTLA-4 were more highly expressed in the dominant epitope-specific cells during acute SIV infection. Interestingly, only LAG-3 expression remained high during chronic infection in dominant epitope-specific cells. We also explored the binding interaction between peptide:MHC (pMHC) complexes and their cognate TCRs to determine their role in the establishment of immunodominance hierarchies. We found that epitope dominance was associated with higher TCR:pMHC affinity. These studies demonstrate that significant functional differences exist between dominant and subdominant epitope-specific CD8+ T cells within MHC-restricted immunodominance hierarchies and suggest that TCR:pMHC affinity may play an important role in determining the frequency and functionality of these cell populations. These findings advance our understanding of the regulation of T cell immunodominance and will aid HIV vaccine design.  相似文献   

3.
CD8 T-cell (T(CD8+)) responses elicited by viral infection demonstrate the phenomenon of immunodominance: the numbers of T(CD8+) responding to different viral peptides vary over a wide range in a reproducible manner for individuals with the same major histocompatibility complex class I alleles. To better understand immunodominance, we examined T(CD8+) responses to multiple defined viral peptides following infection of mice with influenza virus. The immunodominance hierarchy of influenza virus-specific T(CD8+) was not greatly perturbed by the absence of either perforin or T-helper cells or by interference with B7 (CD80)-mediated signaling. These findings indicate that costimulation by antigen-presenting cells (APCs) or killing of APCs by T(CD8+) plays only a minor role in establishing the immunodominance hierarchy of antiviral T(CD8+) in this system. This points to intrinsic features of the T(CD8+) repertoire as major contributors to immunodominance.  相似文献   

4.
Acquisition of T cell responses during primary CMV infection in lung transplant recipients (LTRs) appear critical for host defense and allograft durability, with increased mortality in donor+/recipient- (D+R-) individuals. In 15 D+R- LTRs studied, acute primary CMV infection was characterized by viremia in the presence or absence of pneumonitis, with viral loads higher in the lung airways/allograft compared with the blood. A striking influx of CD8+ T cells into the lung airways/allograft was observed, with inversion of the CD4+:CD8+ T cell ratio. De novo CMV-specific CD8+ effector frequencies in response to pooled peptides of pp65 were strikingly higher in lung mononuclear cells compared with the PBMC and predominated over IE1-specific responses and CD4+ effector responses in both compartments. The frequencies of pp65-specific cytokine responses were significantly higher in lung mononuclear cells compared with PBMC and demonstrated marked contraction with long-term persistence of effector memory CD8+ T cells in the lung airways following primary infection. CMV-tetramer+CD8+ T cells from PBMC were CD45RA- during viremia and transitioned to CD45RA+ following resolution. In contrast, CMV-specific CD8+ effectors in the lung airways/allograft maintained a CD45RA- phenotype during transition from acute into chronic infection. Together, these data reveal differential CMV-specific CD8+ effector frequencies, immunodominance, and polyfunctional cytokine responses predominating in the lung airways/allograft compared with the blood during acute primary infection. Moreover, we show intercompartmental phenotypic differences in CMV-specific memory responses during the transition to chronic infection.  相似文献   

5.
The primary CD8(+) T cell response of C57BL/6J mice against the 28 known epitopes of lymphocytic choriomeningitis virus (LCMV) is associated with a clear immunodominance hierarchy whose mechanism has yet to be defined. To evaluate the role of epitope competition in immunodominance, we manipulated the number of CD8(+) T cell epitopes that could be recognized during LCMV infection. Decreasing epitope numbers, using a viral variant lacking dominant epitopes or C57BL/6J mice lacking H-2K(b), resulted in minor response increases for the remaining epitopes and no new epitopes being recognized. Increasing epitope numbers by using F(1) hybrid mice, delivery by recombinant vaccinia virus, or epitope delivery as a pool in IFA maintained the overall response pattern; however, changes in the hierarchy did become apparent. MHC binding affinity of these epitopes was measured and was found to not strictly predict the hierarchy since in several cases similarly high binding affinities were associated with differences in immunodominance. In these instances the naive CD8(+) T cell precursor frequency, directly measured by tetramer staining, correlated with the response hierarchy seen after LCMV infection. Finally, we investigated an escape mutant of the dominant GP33-41 epitope that elicited a weak response following LCMV variant virus infection. Strikingly, dominance loss likely reflects a substantial reduction in frequencies of naive precursors specific for this epitope. Thus, our results indicate that an intrinsic property of the epitope (MHC binding affinity) and an intrinsic property of the host (naive precursor frequency) jointly dictate the immunodominance hierarchy of CD8(+) T cell responses.  相似文献   

6.
H2-M3-restricted presentation of N-formyl methionine (f-Met) peptides to CD8(+) T cells provides a mechanism for selective recognition of bacterial infection. In this report we demonstrate that Listeria monocytogenes infection induces distinct CD8(+) T cell populations specific for each of the known Listeria-derived formyl methionine peptides presented by M3. The sum H2-M3-restricted, Listeria-specific T cell response constitutes a major fraction of the total CD8(+) T cell response to primary infection. H2-M3-restricted T cell populations expand synchronously in vivo and achieve peak frequencies approximately 2 days earlier than MHC class Ia-restricted T cell populations. Although cross-recognition of different f-Met peptides by M3-restricted T cells was previously described, costaining of CD8(+) T cells ex vivo with H2-M3 tetramers complexed with different f-Met peptides shows that the majority of Listeria-specific, M3-restricted CD8(+) T cells are peptide specific. In contrast to the highly predictable size and immunodominance hierarchies of MHC class Ia-restricted T cell responses, the magnitudes of T cell responses specific for H2-M3-restricted peptides are remarkably variable between genetically identical mice. Our findings demonstrate that H2-M3-restricted T cell responses are distinct from classically restricted T cell responses to bacterial infection.  相似文献   

7.
Primary CD8+ T cell responses play a major role in controlling infection by many viruses, and CD8+ memory T cells can confer immunity to virus challenge. In this study we report that for many epitope-specific CD8+ T cell populations, the regulation of an important effector molecule, IFN-gamma, changes dramatically over the course of infection. During the acute phase of infection, many CD8+ T cells exhibit a significant lag before producing IFN-gamma in response to Ag contact; in contrast, the onset of IFN-gamma production by memory cells of the same epitope specificity is markedly accelerated. The biological consequences of this improved responsiveness are manifold. Moreover, during the acute phase of the CD8+ T cell response when immunodominance is being established, there is a strong correlation (p = 0.0002) between the abundance of each epitope-specific T cell population and the rapidity with which it initiates IFN-gamma synthesis. Previous studies have indicated that IFN-gamma plays a critical role in determining the immunodominance hierarchy of an on-going T cell response, and in this report we present evidence for an underlying mechanism: we propose that the CD8+ T cells that most rapidly initiate IFN-gamma production may be at a selective advantage, permitting them to dominate the developing T cell response.  相似文献   

8.
Microbial infections induce the replacement of constitutive proteasomes by immunoproteasomes (I-proteasomes). I-proteasomes support efficient generation of MHC class I epitopes and influence immunodominance hierarchies of CD8(+) T cells. Recently, the function of I-proteasomes in antimicrobial responses was challenged by showing that the lack of I-proteasomes has no effect on induction and function of lymphocytic choriomeningitis virus-specific CD8(+) T cells. Here, we show that infection with Listeria monocytogenes rapidly induces I-proteasomes in nonlymphoid tissues, which leads to enhanced generation of protection relevant CD8(+) T cell epitopes. I-proteasome-deficient mice (beta5i(-/-) mice) exhibited normal frequencies of L. monocytogenes-specific CD8(+) T cells. However, clearance of L. monocytogenes in liver but not spleen was significantly impaired in I-proteasome-deficient mice. In summary, our studies demonstrate that induction of I-proteasomes is required for CD8(+) T cell-mediated elimination of L. monocytogenes from nonlymphoid but not lymphoid tissues.  相似文献   

9.
Defining the components of an HIV immunogen that could induce effective CD8+ T cell responses is critical to vaccine development. We addressed this question by investigating the viral targets of CD8+ T cells that potently inhibit HIV replication in vitro, as this is highly predictive of virus control in vivo. We observed broad and potent ex vivo CD8+ T cell-mediated viral inhibitory activity against a panel of HIV isolates among viremic controllers (VC, viral loads <5000 copies/ml), in contrast to unselected HIV-infected HIV Vaccine trials Network (HVTN) participants. Viral inhibition of clade-matched HIV isolates was strongly correlated with the frequency of CD8+ T cells targeting vulnerable regions within Gag, Pol, Nef and Vif that had been identified in an independent study of nearly 1000 chronically infected individuals. These vulnerable and so-called “beneficial” regions were of low entropy overall, yet several were not predicted by stringent conservation algorithms. Consistent with this, stronger inhibition of clade-matched than mismatched viruses was observed in the majority of subjects, indicating better targeting of clade-specific than conserved epitopes. The magnitude of CD8+ T cell responses to beneficial regions, together with viral entropy and HLA class I genotype, explained up to 59% of the variation in viral inhibitory activity, with magnitude of the T cell response making the strongest unique contribution. However, beneficial regions were infrequently targeted by CD8+ T cells elicited by vaccines encoding full-length HIV proteins, when the latter were administered to healthy volunteers and HIV-positive ART-treated subjects, suggesting that immunodominance hierarchies undermine effective anti-HIV CD8+ T cell responses. Taken together, our data support HIV immunogen design that is based on systematic selection of empirically defined vulnerable regions within the viral proteome, with exclusion of immunodominant decoy epitopes that are irrelevant for HIV control.  相似文献   

10.
Siddiqui S  Basta S 《Journal of virology》2011,85(24):13224-13233
Currently, we have limited understanding of how Toll-like receptor (TLR) engagement by microbial products influences the immune response during a concurrent virus infection. In this study, we established that dual TLR2 plus TLR3 (designated TLR2+3) stimulation alters the immunodominance hierarchies of lymphocytic choriomeningitis virus (LCMV) epitopes by reducing NP396-specific CD8+ T cell responses and shifting it to a subdominant position. The shift in immunodominance occurred due to a reduction in antigen uptake and the reduced cross-presentation of NP396, a major LCMV immunodominant epitope that is efficiently cross-presented. Moreover, the altered immunodominance was dependent on TLR stimulation occurring at the site of infection. Finally, as lipopolysaccharide failed to induce the same phenomenon, the data suggest that these findings are dependent not only on the dual engagement of the TRIF/MyD88 pathways but also on how TLR agonists activate antigen-presenting cells. Taken together, our data demonstrate a novel role for TLR ligands in regulating antiviral CD8+ T cell responses due to the regulation of the cross-presentation of cell-associated antigens.  相似文献   

11.
CD8 T cell cross-reactivity between heterologous viruses has been shown to provide protective immunity, induce immunopathology, influence the immunodominance of epitope-specific T cell responses, and shape the overall memory population. Virus infections also induce cross-reactive allo-specific CTL responses. In this study, we quantified the allo-specific CD8 T cells elicited by infection of C57BL/6 (B6) mice with lymphocytic choriomeningitis virus (LCMV). Cross-reactive LCMV-specific CD8 T cells were directly visualized using LCMV peptide-charged MHC tetramers to costain T cells that were stimulated to produce intracellular IFN-gamma in response to allogeneic target cells. The cross-reactivity between T cells specific for LCMV and allogeneic Ags was broad-based, in that it involved multiple LCMV-derived peptides, but there were distinctive patterns of reactivity against allogeneic cells with different haplotypes. Experiments indicated that this cross-reactivity was not due to the expression of two TCR per cell, and that the patterns of allo-reactivity changed during sequential infection with heterologous viruses. The allo-specific CD8 T cells generated by LCMV infection were maintained at relatively high frequencies in the memory pool, indicating that memory allo-specific CD8 T cell populations can arise as a consequence of viral infections. Mice previously infected with LCMV and harboring allo-specific memory T cells were refractory to the induction of tolerance to allogeneic skin grafts.  相似文献   

12.
Ablation of CD8 and CD4 T cell responses by high viral loads   总被引:19,自引:0,他引:19  
To evaluate the impact of sustained viral loads on anti-viral T cell responses we compared responses that cleared acute lymphocytic choriomeningitis virus infection with those that were elicited but could not resolve chronic infection. During acute infection, as replicating virus was cleared, CD8 T cell responses were down-regulated, and a pool of resting memory cells developed. In chronically infected hosts, the failure to control the infection was associated with pronounced and prolonged activation of virus-specific CD8 T cells. Nevertheless, there was a progressive diminution of their effector activities as their capacity to produce first IL-2, then TNF-alpha, and finally IFN-gamma was lost. Chronic lymphocytic choriomeningitis virus infection was also associated with differential contraction of certain CD8 T cell responses, resulting in altered immunodominance. However, this altered immunodominance was not due to selective expansion of T cells expressing particular TCR Vbeta segments during chronic infection. High viral loads were not only associated with the ablation of CD8 T cell responses, but also with impaired production of IL-2 by virus-specific CD4 T cells. Taken together, our data show that sustained exposure to high viral loads results in the progressive functional inactivation of virus-specific T cell responses, which may further promote virus persistence.  相似文献   

13.
Little is known regarding the participation of CD4+ CD25+ regulatory T cells (Treg) in TCD8+ responses. In this study, we show that Treg depletion via treatment with anti-CD25 mAb (PC61) significantly enhances TCD8+ responses to influenza A virus, vaccinia virus, and SV40-transformed cells induced by either direct priming or cross-priming. PC61 did not enhance TCD8+ responses in CD4-deficient mice, providing the initial demonstration that PC61 acts on a subset of TCD4+, and not on other cells that express either CD25 or a fortuitously cross-reactive Ag. We further show that Treg selectively suppress responses to the most immunodominant TCD8+ determinants in the three systems examined. Therefore, Treg influence TCD8 immunodominance hierarchies by moderating disparities in responses to different determinants.  相似文献   

14.
CD8+ T cells play an important role in protection against both acute and persistent viral infections, and new vaccines that induce CD8+ T cell immunity are currently needed. Here, we show that lymphocytic choriomeningitis virus (LCMV)-specific CD8+ T cells can be generated in response to a nonreplicating H2O2-inactivated whole-virus vaccine (H2O2-LCMV). Vaccine-induced CD8+ T cell responses exhibited an increased ability to produce multiple cytokines at early time points following immunization compared to infection-induced responses. Vaccination with H2O2-LCMV induced the expansion of a narrow subset of the antigen-specific CD8+ T cells induced by LCMV strain Arm infection, resulting in a distinct immunodominance hierarchy. Acute LCMV infection stimulated immunodominance patterns that shifted over time or after secondary infection, whereas vaccine-generated immunodominance profiles remained remarkably stable even following subsequent viral infection. Vaccine-induced CD8+ T cell populations expanded sharply in response to challenge and were then maintained at high levels, with responses to individual epitopes occupying up to 40% of the CD8+ T cell compartment at 35 days after challenge. H2O2-LCMV vaccination protected animals against challenge with chronic LCMV clone 13, and protection was mediated by CD8+ T cells. These results indicate that vaccination with an H2O2-inactivated whole-virus vaccine induces LCMV-specific CD8+ T cells with unique functional characteristics and provides a useful model for studying CD8+ T cells elicited in the absence of active viral infection.  相似文献   

15.
CTL responses against multiple hepatitis C virus (HCV) epitopes were detected in 7 of 29 (24.1%) healthy family members (HFM) persistently exposed to chronically HCV-infected patients (HCV-HFM). These precursor CTL were at very low or undetectable frequencies, as determined by limiting dilution analysis. However, when HCV-specific effector CD8+ T cells, freshly isolated from PBMC of HCV-HFM, were assessed by a sensitive enzyme-linked immunospot assay, their frequencies were severalfold higher than those of precursor CTL. These results indicate that the two assays detect two functionally distinct T cell populations and that the effector cells are not assayed by the 51Cr-release assay. Furthermore, the combination of cell depletion and enzyme-linked immunospot analyses showed that the effector cells were confined into a CD8+ CD45RO+ CD28- population. The persistence of effector CD8+ T cells specific for both the structural and nonstructural viral proteins in uninfected HCV-HFM, suggest that: 1) an immunological memory is established upon a subclinical infection without any evidence of hepatitis, in a large cohort of HCV-exposed individuals; 2) because these cells required neither restimulation nor the addition of particular cytokines in vitro for differentiating in effectors, they should be capable of prompt HCV-specific effector function in vivo, possibly providing antiviral protection; and 3) the maintenance of effector T cell responses may be sustained by persisting low-level stimulation induced by inapparent infections.  相似文献   

16.
Mice infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV) clear infectious virus; nevertheless, virus persists in the CNS as noninfectious RNA, resulting in ongoing primary demyelination. Phenotypic and functional analysis of CNS infiltrating cells during acute infection revealed a potent regional CD8+ T cell response comprising up to 50% virus-specific T cells. The high prevalence of virus-specific T cells correlated with ex vivo cytolytic activity and efficient reduction in viral titers. Progressive viral clearance coincided with the loss of cytolytic activity, but retention of IFN-gamma secretion and increased expression of the early activation marker CD69, indicating differential regulation of effector function. Although the total number of infiltrating T cells declined following clearance of infectious virus, CD8+ T cells, both specific for the dominant viral epitopes and of unknown specificity, were retained within the CNS, suggesting an ongoing T cell response during persistent CNS infection involving a virus-independent component. Reversed immunodominance within the virus-specific CD8+ T cell population further indicated epitope-specific regulation, supporting ongoing T cell activation. Even in the absence of infectious virus, the CNS thus provides an environment that maintains both unspecific and Ag-specific CD8+ T cells with restricted effector function. Chronic T cell stimulation may thus play a role in preventing viral recrudescence, while increasing the risk of pathological conditions, such as demyelination.  相似文献   

17.
Infection of mice with lymphocytic choriomeningitis virus (LCMV) is frequently used to study the underlying principles of viral infections and immune responses. We fit a mathematical model to recently published data characterizing Ag-specific CD8+ T cell responses during acute (Armstrong) and chronic (clone 13) LCMV infection. This allows us to analyze the differences in the dynamics of CD8+ T cell responses against different types of LCMV infections. For the four CD8+ T cell responses studied, we find that, compared with the responses against acute infection, responses against chronic infection are generally characterized by an earlier peak and a faster contraction phase thereafter. Furthermore, the model allows us to give a new interpretation of the effect of thymectomy on the dynamics of CD8+ T cell responses during chronic LCMV infection: a smaller number of naive precursor cells is sufficient to account for the observed differences in the responses in thymectomized mice. Finally, we compare data characterizing LCMV-specific CD8+ T cell responses from different laboratories. Although the data were derived from the same experimental model, we find quantitative differences that can be solved by introducing a scaling factor. Also, we find kinetic differences that are at least partly due to the infrequent measurements of CD8+ T cells in the different laboratories.  相似文献   

18.
The kinetics of peptide presentation by major histocompatibility complex class I (MHC-I) molecules may contribute to the efficacy of CD8+ T cells. Whether all CD8+ T-cell epitopes from a protein are presented by the same MHC-I molecule with similar kinetics is unknown. Here we show that CD8+ T-cell epitopes derived from SIVmac239 Gag are presented with markedly different kinetics. We demonstrate that this discrepancy in presentation is not related to immunodominance but instead is due to differential requirements for epitope generation. These results illustrate that significant differences in presentation kinetics can exist among CD8+ T-cell epitopes derived from the same viral protein.  相似文献   

19.
Both human CMV and murine CMV (MCMV) elicit large CD8 T cell responses, despite the potent effects of viral genes that interfere with the MHC class I (MHC I) pathway of Ag presentation. To investigate the impact of immune evasion on CD8 T cell priming, we infected mice with wild-type (wt) MCMV or a mutant lacking its MHC I immune evasion genes, Deltam4+m6+m152 MCMV. In acute infection, the two viruses elicited a CD8 T cell response to 26 peptide epitopes that was virtually identical in total size, kinetics, and immunodominance hierarchy. This occurred despite results demonstrating that primary DCs are susceptible to the effects of MCMV's MHC I immune evasion genes. Eight months later, responses to both wt and mutant MCMV displayed the same CD8 T cell "memory inflation" and altered immunodominance that characterize the transition to chronic MCMV infection in C57BL/6 mice. Taken together, these findings suggest either that cross-priming dominates over direct CD8 T cell priming in both acute and chronic MCMV infection, or else that the MHC I immune evasion genes of MCMV are unable to alter direct CD8 T cell priming in vivo. At 2 years postinfection, differences in CD8 T cell immunodominance emerged between individual mice, but on average there were only slight differences between wt and mutant virus infections. Overall, the data indicate that the presence or absence of MHC I immune evasion genes has remarkably little impact on the size or specificity of the MCMV-specific CD8 T cell response over an entire lifetime of infection.  相似文献   

20.
Petravic J  Davenport MP 《PloS one》2010,5(11):e15083
Many studies have shown that vaccines inducing CD8+ T cell responses can reduce viral loads and preserve CD4+ T cell numbers in monkey models of HIV infection. The mechanism of viral control by the vaccine-induced CD8+ T cells is usually assumed to be cytolysis of infected cells. However, in addition to cytolysis of infected cells, CD8+ T cells secrete a range of soluble factors that suppress viral replication. We have studied the dynamics of virus and CD4+ T cells in a successful vaccination-challenge model of SHIV infection. We find that better viral control in the acute phase of infection is associated with slower decay of peak viral load. Comparing viral and CD4+ T cell dynamics in acute infection, we find that a cytolytic mode of viral control with direct killing of infected cells is inconsistent with the observed trends. On the other hand, comparison of the predicted effects of noncytolytic CD8+ effector function with the experimental data shows that non-cytolytic control provides a better explanation of the experimental results. Our analysis suggests that vaccine-induced CD8+ T cells control SHIV infection by non-cytolytic means.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号